1
|
Pasadi S, Muniyappa K. Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11-Rad50-Nbs1 complex in the repair of cisplatin-induced DNA cross-links. Oncotarget 2020; 11:4028-4044. [PMID: 33216839 PMCID: PMC7646826 DOI: 10.18632/oncotarget.27777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt/β-catenin signalling pathway plays a crucial role in a variety of functions including cell proliferation and differentiation, tumorigenic processes and radioresistance in cancer cells. The Mre11–Rad50–Nbs1 (MRN) complex has a pivotal role in sensing and repairing DNA damage. However, it remains unclear whether a connection exists between Wnt/β-catenin signalling and the MRN complex in the repair of cisplatin-induced DNA interstrand cross-links (ICLs). Here, we report that (1) cisplatin exposure results in a significant increase in the levels of MRN complex subunits in human tumour cells; (2) cisplatin treatment stimulates Wnt/β-catenin signalling through increased β-catenin expression; (3) the functional perturbation of Wnt/β-catenin signalling results in aberrant cell cycle dynamics and the activation of DNA damage response and apoptosis; (4) a treatment with CHIR99021, a potent and selective GSK3β inhibitor, augments cisplatin-induced cell death in cancer cells. On the other hand, inactivation of the Wnt/β-catenin signalling with FH535 promotes cell survival. Consistently, the staining pattern of γH2AX-foci is significantly reduced in the cells exposed simultaneously to cisplatin and FH535; and (5) inhibition of Wnt/β-catenin signalling impedes cisplatin-induced phosphorylation of Chk1, abrogates the G2/M phase arrest and impairs recombination-based DNA repair. Our data further show that Wnt signalling positively regulates the expression of β-catenin, Mre11 and FANCD2 at early time points, but declining thereafter due to negative feedback regulation. These results support a model wherein Wnt/β-catenin signalling and MRN complex crosstalk during DNA ICL repair, thereby playing an important role in the maintenance of genome stability.
Collapse
Affiliation(s)
- Sanjeev Pasadi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Cilona M, Locatello LG, Novelli L, Gallo O. The Mismatch Repair System (MMR) in Head and Neck Carcinogenesis and Its Role in Modulating the Response to Immunotherapy: A Critical Review. Cancers (Basel) 2020; 12:cancers12103006. [PMID: 33081243 PMCID: PMC7602801 DOI: 10.3390/cancers12103006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The dysfunction of the mismatch repair system, an important mechanism for the detection and correction of DNA replication mistakes, may often lead to instability in the length of specific genetic sequences, known as microsatellites, and to the accumulation of mutations. Microsatellite instability is a well-known risk factor for the development of colorectal cancers and other types of tumors but is also considered a positive predictor of the immunotherapy response. Malignancies harboring such a specific genomic instability are very immunogenic because of the great number of aberrant antigens they produce. Therapies based on the blockade of specific immune checkpoints have shown to induce an effective immune response against microsatellite-unstable cancer. Many studies proved that microsatellite instability has a decisive role in the carcinogenesis and the malignant progression of head and neck cancer and, in the near future, it may become a useful tool in tailoring immunotherapy also in this field of precision oncology. Abstract The mismatch repair (MMR) system has a major role in the detection and correction of DNA replication errors, resulting from DNA polymerase slippage or nucleotides misincorporation. Specific inherited/acquired alterations or epigenetic inactivation of MMR genes are associated with microsatellite instability (MSI): the loss of crucial function in repairing DNA alterations can promote carcinogenesis by favoring the accumulation of thousands of mutations in a broad spectrum of different anatomic sites such as colon, stomach, prostate, esophagus, endometrium, lung and head and neck. Recent extensive data suggest that tumor mutational burden strongly correlates with a clinical response to immunotherapy using checkpoint inhibitors and this response is influenced by MMR deficiency in a wide range of human solid cancers. In this context, few data about this crucial point are available for head and neck cancer (HNC). In this review, we discuss the role of MMR alterations and the resulting MSI in HNC pathogenesis. Furthermore, by summarizing the clinical available data on how they influence the progression of precancerous lesions and the risk of recurrence or second primary tumors, we want to define the current role of MSI in the management of HNC. Finally, we analyze the complex interaction between cancer cells and the immune system addressing the data now available about a potential correlation between microsatellite instability and immunotherapy response in HNC.
Collapse
Affiliation(s)
- Maria Cilona
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
| | - Luca Giovanni Locatello
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
| | - Luca Novelli
- Department of Pathology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy;
| | - Oreste Gallo
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla, 3-50134 Florence, Italy; (M.C.); (L.G.L.)
- Correspondence: ; Tel.: +39-0557947989
| |
Collapse
|
3
|
Abstract
Bone and marrow are the two facets of the same organ, in which bone and hematopoietic cells coexist and interact. Marrow and skeletal tissue influence each-other and a variety of genetic disorders directly targets both of them, which may result in combined hematopoietic failure and skeletal malformations. Other conditions primarily affect one organ with secondary influences on the other. For instance, various forms of congenital anemias reduce bone mass and induce osteoporosis, while osteoclast failure in osteopetrosis prevents marrow development reducing medullary cavities and causing anemia and pancytopenia. Understanding the pathophysiology of these conditions may facilitate diagnosis and management, although many disorders are presently incurable. This article describes several congenital bone diseases and their relationship to hematopoietic tissue.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
5
|
SNM1B/Apollo in the DNA damage response and telomere maintenance. Oncotarget 2018; 8:48398-48409. [PMID: 28430596 PMCID: PMC5564657 DOI: 10.18632/oncotarget.16864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 01/26/2023] Open
Abstract
hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.
Collapse
|
6
|
Freire BL, Homma TK, Funari MFA, Lerario AM, Leal AM, Velloso EDRP, Malaquias AC, Jorge AAL. Homozygous loss of function BRCA1 variant causing a Fanconi-anemia-like phenotype, a clinical report and review of previous patients. Eur J Med Genet 2017; 61:130-133. [PMID: 29133208 DOI: 10.1016/j.ejmg.2017.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/03/2017] [Accepted: 11/08/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Fanconi Anemia (FA) is a rare and heterogeneous genetic syndrome. It is associated with short stature, bone marrow failure, high predisposition to cancer, microcephaly and congenital malformation. Many genes have been associated with FA. Previously, two adult patients with biallelic pathogenic variant in Breast Cancer 1 gene (BRCA1) had been identified in Fanconi Anemia-like condition. CLINICAL REPORT The proband was a 2.5 year-old girl with severe short stature, microcephaly, neurodevelopmental delay, congenital heart disease and dysmorphic features. Her parents were third degree cousins. Routine screening tests for short stature was normal. METHODS We conducted whole exome sequencing (WES) of the proband and used an analysis pipeline to identify rare nonsynonymous genetic variants that cause short stature. RESULTS We identified a homozygous loss-of-function BRCA1 mutation (c.2709T > A; p. Cys903*), which promotes the loss of critical domains of the protein. Cytogenetic study with DEB showed an increased chromosomal breakage. We screened heterozygous parents of the index case for cancer and we detected, in her mother, a metastatic adenocarcinoma in an axillar lymph node with probable primary site in the breast. CONCLUSION It is possible to consolidate the FA-like phenotype associated with biallelic loss-of-function BRCA1, characterized by microcephaly, short stature, developmental delay, dysmorphic face features and cancer predisposition. In our case, the WES allowed to establish the genetic cause of short stature in the context of a chromosome instability syndrome. An identification of BRCA1 mutations in our patient allowed precise genetic counseling and also triggered cancer screening for the patient and her family members.
Collapse
Affiliation(s)
- Bruna L Freire
- Unidade de Endocrinologia Genética (LIM25) e Laboratório de Endocrinologia Celular e Molecular, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Thais K Homma
- Unidade de Endocrinologia Genética (LIM25) e Laboratório de Endocrinologia Celular e Molecular, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Antônio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aline M Leal
- Laboratorio de Citogenetica, Unidade de Hematologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Elvira D R P Velloso
- Laboratorio de Citogenetica, Unidade de Hematologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexsandra C Malaquias
- Unidade de Endocrinologia Genética (LIM25) e Laboratório de Endocrinologia Celular e Molecular, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Unidade de Endocrinologia Pediatrica, Departamento de Pediatria, Irmandade da Santa Casa de Misericórdia de São Paulo, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética (LIM25) e Laboratório de Endocrinologia Celular e Molecular, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
7
|
Wilson DM, Rieckher M, Williams AB, Schumacher B. Systematic analysis of DNA crosslink repair pathways during development and aging in Caenorhabditis elegans. Nucleic Acids Res 2017; 45:9467-9480. [PMID: 28934497 PMCID: PMC5766164 DOI: 10.1093/nar/gkx660] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/18/2017] [Indexed: 01/12/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) are generated by endogenous sources and chemotherapeutics, and pose a threat to genome stability and cell survival. Using Caenorhabditis elegans mutants, we identify DNA repair factors that protect against the genotoxicity of ICLs generated by trioxsalen/ultraviolet A (TMP/UVA) during development and aging. Mutations in nucleotide excision repair (NER) components (e.g. XPA-1 and XPF-1) imparted extreme sensitivity to TMP/UVA relative to wild-type animals, manifested as developmental arrest, defects in adult tissue morphology and functionality, and shortened lifespan. Compensatory roles for global-genome (XPC-1) and transcription-coupled (CSB-1) NER in ICL sensing were exposed. The analysis also revealed contributions of homologous recombination (BRC-1/BRCA1), the MUS-81, EXO-1, SLX-1 and FAN-1 nucleases, and the DOG-1 (FANCJ) helicase in ICL resolution, influenced by the replicative-status of the cell/tissue. No obvious or critical role in ICL repair was seen for non-homologous end-joining (cku-80) or base excision repair (nth-1, exo-3), the Fanconi-related proteins BRC-2 (BRCA2/FANCD1) and FCD-2 (FANCD2), the WRN-1 or HIM-6 (BLM) helicases, or the GEN-1 or MRT-1 (SNM1) nucleases. Our efforts uncover replication-dependent and -independent ICL repair networks, and establish nematodes as a model for investigating the repair and consequences of DNA crosslinks in metazoan development and in adult post-mitotic and proliferative germ cells.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Matthias Rieckher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ashley B Williams
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
8
|
Brosh RM, Bellani M, Liu Y, Seidman MM. Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev 2017; 33:67-75. [PMID: 27223997 DOI: 10.1016/j.arr.2016.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023]
Abstract
Fanconi Anemia (FA) is a rare autosomal genetic disorder characterized by progressive bone marrow failure (BMF), endocrine dysfunction, cancer, and other clinical features commonly associated with normal aging. The anemia stems directly from an accelerated decline of the hematopoietic stem cell compartment. Although FA is a complex heterogeneous disease linked to mutations in 19 currently identified genes, there has been much progress in understanding the molecular pathology involved. FA is broadly considered a DNA repair disorder and the FA gene products, together with other DNA repair factors, have been implicated in interstrand cross-link (ICL) repair. However, in addition to the defective DNA damage response, altered epigenetic regulation, and telomere defects, FA is also marked by elevated levels of inflammatory mediators in circulation, a hallmark of faster decline in not only other hereditary aging disorders but also normal aging. In this review, we offer a perspective of FA as a monogenic accelerated aging disorder, citing the latest evidence for its multi-factorial deficiencies underlying its unique clinical and cellular features.
Collapse
|
9
|
Shen Y, Lee YH, Panneerselvam J, Zhang J, Loo LWM, Fei P. Mutated Fanconi anemia pathway in non-Fanconi anemia cancers. Oncotarget 2016; 6:20396-403. [PMID: 26015400 PMCID: PMC4653013 DOI: 10.18632/oncotarget.4056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
An extremely high cancer incidence and the hypersensitivity to DNA crosslinking agents associated with Fanconi Anemia (FA) have marked it to be a unique genetic model system to study human cancer etiology and treatment, which has emerged an intense area of investigation in cancer research. However, there is limited information about the relationship between the mutated FA pathway and the cancer development or/and treatment in patients without FA. Here we analyzed the mutation rates of the seventeen FA genes in 68 DNA sequence datasets. We found that the FA pathway is frequently mutated across a variety of human cancers, with a rate mostly in the range of 15 to 35 % in human lung, brain, bladder, ovarian, breast cancers, or others. Furthermore, we found a statistically significant correlation (p < 0.05) between the mutated FA pathway and the development of human bladder cancer that we only further analyzed. Together, our study demonstrates a previously unknown fact that the mutated FA pathway frequently occurs during the development of non-FA human cancers, holding profound implications directly in advancing our understanding of human tumorigenesis as well as tumor sensitivity/resistance to crosslinking drug-relevant chemotherapy.
Collapse
Affiliation(s)
- Yihang Shen
- Program of Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Yuan-Hao Lee
- Program of Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Jayabal Panneerselvam
- Program of Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lenora W M Loo
- Program of Epidemiology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Peiwen Fei
- Program of Cancer Biology, University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
10
|
Cantor SB, Nayak S. FANCJ at the FORK. Mutat Res 2016; 788:7-11. [PMID: 26926912 DOI: 10.1016/j.mrfmmm.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA.
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| |
Collapse
|
11
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
12
|
Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:1-19. [PMID: 26596544 DOI: 10.1016/j.mrrev.2015.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX is the level of γH2AX above baseline, measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually persist for days to months). This review summarizes the concept of persistent γH2AX in the context of exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and accelerated aging disorders. Summary of the current literature demonstrates the following (i) γH2AX persistence is a common phenomenon that occurs in humans and animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX response, thus enabling the potential for monitoring cancer patients' response to chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and (v) increased endogenous γH2AX levels may be associated with diseases of accelerated aging. In summary, measurement of persistent γH2AX could potentially be used as a marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia 5064, Australia
| | - Maxime François
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia.
| |
Collapse
|