1
|
Damasceno JD, Briggs EM, Krasilnikova M, Marques CA, Lapsley C, McCulloch R. R-loops acted on by RNase H1 influence DNA replication timing and genome stability in Leishmania. Nat Commun 2025; 16:1470. [PMID: 39922816 PMCID: PMC11807225 DOI: 10.1038/s41467-025-56785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Genomes in eukaryotes normally undergo DNA replication in a choreographed temporal order, resulting in early and late replicating chromosome compartments. Leishmania, a human protozoan parasite, displays an unconventional DNA replication program in which the timing of DNA replication completion is chromosome size-dependent: larger chromosomes complete replication later then smaller ones. Here we show that both R-loops and RNase H1, a ribonuclease that resolves RNA-DNA hybrids, accumulate in Leishmania major chromosomes in a pattern that reflects their replication timing. Furthermore, we demonstrate that such differential organisation of R-loops, RNase H1 and DNA replication timing across the parasite's chromosomes correlates with size-dependent differences in chromatin accessibility, G quadruplex distribution and sequence content. Using conditional gene excision, we show that loss of RNase H1 leads to transient growth perturbation and permanently abrogates the differences in DNA replication timing across chromosomes, as well as altering levels of aneuploidy and increasing chromosome instability in a size-dependent manner. This work provides a link between R-loop homeostasis and DNA replication timing in a eukaryotic parasite and demonstrates that orchestration of DNA replication dictates levels of genome plasticity in Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Emma M Briggs
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
- Biosciences Institute, Cookson Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marija Krasilnikova
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Craig Lapsley
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
2
|
Al-Refaie N, Padovani F, Hornung J, Pudelko L, Binando F, Del Carmen Fabregat A, Zhao Q, Towbin BD, Cenik ES, Stroustrup N, Padeken J, Schmoller KM, Cabianca DS. Fasting shapes chromatin architecture through an mTOR/RNA Pol I axis. Nat Cell Biol 2024; 26:1903-1917. [PMID: 39300311 PMCID: PMC11567895 DOI: 10.1038/s41556-024-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Chromatin architecture is a fundamental mediator of genome function. Fasting is a major environmental cue across the animal kingdom, yet how it impacts three-dimensional (3D) genome organization is unknown. Here we show that fasting induces an intestine-specific, reversible and large-scale spatial reorganization of chromatin in Caenorhabditis elegans. This fasting-induced 3D genome reorganization requires inhibition of the nutrient-sensing mTOR pathway, acting through the regulation of RNA Pol I, but not Pol II nor Pol III, and is accompanied by remodelling of the nucleolus. By uncoupling the 3D genome configuration from the animal's nutritional status, we find that the expression of metabolic and stress-related genes increases when the spatial reorganization of chromatin occurs, showing that the 3D genome might support the transcriptional response in fasted animals. Our work documents a large-scale chromatin reorganization triggered by fasting and reveals that mTOR and RNA Pol I shape genome architecture in response to nutrients.
Collapse
Affiliation(s)
- Nada Al-Refaie
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johanna Hornung
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lorenz Pudelko
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians Universität München, Munich, Germany
| | - Francesca Binando
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrea Del Carmen Fabregat
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Qiuxia Zhao
- Department of Molecular Biosciences, University of Texas Austin, Austin, TX, USA
| | | | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas Austin, Austin, TX, USA
| | - Nicholas Stroustrup
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jan Padeken
- Institute of Molecular Biology, Mainz, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daphne S Cabianca
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
3
|
Kumar P, Gholamalamdari O, Zhang Y, Zhang L, Vertii A, van Schaik T, Peric-Hupkes D, Sasaki T, Gilbert DM, van Steensel B, Ma J, Kaufman PD, Belmont AS. Nucleolus and centromere Tyramide Signal Amplification-Seq reveals variable localization of heterochromatin in different cell types. Commun Biol 2024; 7:1135. [PMID: 39271748 PMCID: PMC11399238 DOI: 10.1038/s42003-024-06838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated Tyramide Signal Amplification (TSA)-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in human embryonic stem cells (hESCs). Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yang Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tom van Schaik
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan Peric-Hupkes
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Paul D Kaufman
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Ogienko AA, Korepina MO, Pindyurin AV, Omelina ES. New Functional Motifs for the Targeted Localization of Proteins to the Nucleolus in Drosophila and Human Cells. Int J Mol Sci 2024; 25:1230. [PMID: 38279227 PMCID: PMC10817092 DOI: 10.3390/ijms25021230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The nucleolus is a significant nuclear organelle that is primarily known for its role in ribosome biogenesis. However, emerging evidence suggests that the nucleolus may have additional functions. Particularly, it is involved in the organization of the three-dimensional structure of the genome. The nucleolus acts as a platform for the clustering of repressed chromatin, although this process is not yet fully understood, especially in the context of Drosophila. One way to study the regions of the genome that cluster near the nucleolus in Drosophila demands the identification of a reliable nucleolus-localizing signal (NoLS) motif(s) that can highly specifically recruit the protein of interest to the nucleolus. Here, we tested a series of various NoLS motifs from proteins of different species, as well as some of their combinations, for the ability to drive the nucleolar localization of the chimeric H2B-GFP protein. Several short motifs were found to effectively localize the H2B-GFP protein to the nucleolus in over 40% of transfected Drosophila S2 cells. Furthermore, it was demonstrated that NoLS motifs derived from Drosophila proteins exhibited greater efficiency compared to that of those from other species.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Chen N, Buonomo SCB. Three-dimensional nuclear organisation and the DNA replication timing program. Curr Opin Struct Biol 2023; 83:102704. [PMID: 37741142 DOI: 10.1016/j.sbi.2023.102704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
In eukaryotic cells, genome duplication is temporally organised according to a program referred to as the replication-timing (RT) program. The RT of individual genomic domains strikingly parallels the three-dimensional architecture of their chromatin contacts and subnuclear distribution. However, it is unclear whether this correspondence is coincidental or whether it indicates a causal and regulatory relationship. In either case, the nature of the molecular mechanisms ensuring this spatio-temporal coordination is still unknown. Here, we review recent evidence that begins to uncover the existence of a shared molecular machinery at the core of the spatio-temporal co-regulation of DNA replication and genome architecture. Finally, we discuss the outstanding, key question of the biological role of their coordination.
Collapse
Affiliation(s)
- Naiming Chen
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Sara C B Buonomo
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
6
|
Kumar P, Gholamalamdari O, Zhang Y, Zhang L, Vertii A, van Schaik T, Peric-Hupkes D, Sasaki T, Gilbert DM, van Steensel B, Ma J, Kaufman PD, Belmont AS. Nucleolus and centromere TSA-Seq reveals variable localization of heterochromatin in different cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564613. [PMID: 37961445 PMCID: PMC10634939 DOI: 10.1101/2023.10.29.564613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated TSA-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in hESCs. Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.
Collapse
|
7
|
van Schaik T, Manzo SG, Vouzas AE, Liu NQ, Teunissen H, de Wit E, Gilbert DM, van Steensel B. Dynamic chromosomal interactions and control of heterochromatin positioning by Ki-67. EMBO Rep 2022; 23:e55782. [PMID: 36245428 PMCID: PMC9724667 DOI: 10.15252/embr.202255782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Ki-67 is a chromatin-associated protein with a dynamic distribution pattern throughout the cell cycle and is thought to be involved in chromatin organization. The lack of genomic interaction maps has hampered a detailed understanding of its roles, particularly during interphase. By pA-DamID mapping in human cell lines, we find that Ki-67 associates with large genomic domains that overlap mostly with late-replicating regions. Early in interphase, when Ki-67 is present in pre-nucleolar bodies, it interacts with these domains on all chromosomes. However, later in interphase, when Ki-67 is confined to nucleoli, it shows a striking shift toward small chromosomes. Nucleolar perturbations indicate that these cell cycle dynamics correspond to nucleolar maturation during interphase, and suggest that nucleolar sequestration of Ki-67 limits its interactions with larger chromosomes. Furthermore, we demonstrate that Ki-67 does not detectably control chromatin-chromatin interactions during interphase, but it competes with the nuclear lamina for interaction with late-replicating DNA, and it controls replication timing of (peri)centromeric regions. Together, these results reveal a highly dynamic choreography of genome interactions and roles for Ki-67 in heterochromatin organization.
Collapse
Affiliation(s)
- Tom van Schaik
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Stefano G Manzo
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Athanasios E Vouzas
- Department of Biological ScienceThe Florida State UniversityTallahasseeFLUSA,San Diego Biomedical Research InstituteSan DiegoCAUSA
| | - Ning Qing Liu
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hans Teunissen
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Elzo de Wit
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - David M Gilbert
- Department of Biological ScienceThe Florida State UniversityTallahasseeFLUSA,San Diego Biomedical Research InstituteSan DiegoCAUSA
| | - Bas van Steensel
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands,Department of Cell BiologyErasmus University Medical CentreRotterdamThe Netherlands
| |
Collapse
|
8
|
Razin SV, Ulianov SV. Genome-Directed Cell Nucleus Assembly. BIOLOGY 2022; 11:biology11050708. [PMID: 35625436 PMCID: PMC9138775 DOI: 10.3390/biology11050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Speckles and other nuclear bodies, the nucleolus and perinucleolar zone, transcription/replication factories and the lamina-associated compartment, serve as a structural basis for various genomic functions. In turn, genome activity and specific chromatin 3D organization directly impact the integrity of intranuclear assemblies, initiating/facilitating their formation and dictating their composition. Thus, the large-scale nucleus structure and genome activity mutually influence each other. The cell nucleus is frequently considered a compartment in which the genome is placed to protect it from external forces. Here, we discuss the evidence demonstrating that the cell nucleus should be considered, rather, as structure built around the folded genome. Decondensing chromosomes provide a scaffold for the assembly of the nuclear envelope after mitosis, whereas genome activity directs the assembly of various nuclear compartments, including nucleolus, speckles and transcription factories. Abstract The cell nucleus is frequently considered a cage in which the genome is placed to protect it from various external factors. Inside the nucleus, many functional compartments have been identified that are directly or indirectly involved in implementing genomic DNA’s genetic functions. For many years, it was assumed that these compartments are assembled on a proteinaceous scaffold (nuclear matrix), which provides a structural milieu for nuclear compartmentalization and genome folding while simultaneously offering some rigidity to the cell nucleus. The results of research in recent years have made it possible to consider the cell nucleus from a different angle. From the “box” in which the genome is placed, the nucleus has become a kind of mobile exoskeleton, which is formed around the packaged genome, under the influence of transcription and other processes directly related to the genome activity. In this review, we summarize the main arguments in favor of this point of view by analyzing the mechanisms that mediate cell nucleus assembly and support its resistance to mechanical stresses.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: or
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
9
|
Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains. Nat Commun 2022; 13:1483. [PMID: 35304483 PMCID: PMC8933459 DOI: 10.1038/s41467-022-29146-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic chromosomes are folded into hierarchical domains, forming functional compartments. Nuclear periphery and nucleolus are two nuclear landmarks contributing to repressive chromosome architecture. However, while the role of nuclear lamina (NL) in genome organization has been well documented, the function of the nucleolus remains under-investigated due to the lack of methods for the identification of nucleolar associated domains (NADs). Here we have established DamID- and HiC-based methodologies to generate accurate genome-wide maps of NADs in embryonic stem cells (ESCs) and neural progenitor cells (NPCs), revealing layers of genome compartmentalization with distinct, repressive chromatin states based on the interaction with the nucleolus, NL, or both. NADs show higher H3K9me2 and lower H3K27me3 content than regions exclusively interacting with NL. Upon ESC differentiation into NPCs, chromosomes around the nucleolus acquire a more compact, rigid architecture with neural genes moving away from nucleoli and becoming unlocked for later activation. Further, histone modifications and the interaction strength within A and B compartments of NADs and LADs in ESCs set the choice to associate with NL or nucleoli upon dissociation from their respective compartments during differentiation. The methodologies here developed will make possible to include the nucleolar contribution in nuclear space and genome function in diverse biological systems.
Collapse
|
10
|
Hydroxyurea and Caffeine Impact pRb-like Protein-Dependent Chromatin Architecture Profiles in Interphase Cells of Vicia faba. Int J Mol Sci 2021; 22:ijms22094572. [PMID: 33925461 PMCID: PMC8123844 DOI: 10.3390/ijms22094572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
The survival of cells depends on their ability to replicate correctly genetic material. Cells exposed to replication stress can experience a number of problems that may lead to deregulated proliferation, the development of cancer, and/or programmed cell death. In this article, we have induced prolonged replication arrest via hydroxyurea (HU) treatment and also premature chromosome condensation (PCC) by co-treatment with HU and caffeine (CF) in the root meristem cells of Vicia faba. We have analyzed the changes in the activities of retinoblastoma-like protein (RbS807/811ph). Results obtained from the immunocytochemical detection of RbS807/811ph allowed us to distinguish five unique activity profiles of pRb. We have also performed detailed 3D modeling using Blender 2.9.1., based on the original data and some final conclusions. 3D models helped us to visualize better the events occurring within the nuclei and acted as a high-resolution aid for presenting the results. We have found that, despite the decrease in pRb activity, its activity profiles were mostly intact and clearly recognizable, with some local alterations that may correspond to the increased demand in transcriptional activity. Our findings suggest that Vicia faba’s ability to withstand harsh environments may come from its well-developed and highly effective response to replication stress.
Collapse
|
11
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
12
|
Bizhanova A, Kaufman PD. Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194666. [PMID: 33307247 PMCID: PMC7855492 DOI: 10.1016/j.bbagrm.2020.194666] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Chromatin is a dynamic structure composed of DNA, RNA, and proteins, regulating storage and expression of the genetic material in the nucleus. Heterochromatin plays a crucial role in driving the three-dimensional arrangement of the interphase genome, and in preserving genome stability by maintaining a subset of the genome in a silent state. Spatial genome organization contributes to normal patterns of gene function and expression, and is therefore of broad interest. Mammalian heterochromatin, the focus of this review, mainly localizes at the nuclear periphery, forming Lamina-associated domains (LADs), and at the nucleolar periphery, forming Nucleolus-associated domains (NADs). Together, these regions comprise approximately one-half of mammalian genomes, and most but not all loci within these domains are stochastically placed at either of these two locations after exit from mitosis at each cell cycle. Excitement about the role of these heterochromatic domains in early development has recently been heightened by the discovery that LADs appear at some loci in the preimplantation mouse embryo prior to other chromosomal features like compartmental identity and topologically-associated domains (TADs). While LADs have been extensively studied and mapped during cellular differentiation and early embryonic development, NADs have been less thoroughly studied. Here, we summarize pioneering studies of NADs and LADs, more recent advances in our understanding of cis/trans-acting factors that mediate these localizations, and discuss the functional significance of these associations.
Collapse
Affiliation(s)
- Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Penagos-Puig A, Furlan-Magaril M. Heterochromatin as an Important Driver of Genome Organization. Front Cell Dev Biol 2020; 8:579137. [PMID: 33072761 PMCID: PMC7530337 DOI: 10.3389/fcell.2020.579137] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Heterochromatin is a constituent of eukaryotic genomes with functions spanning from gene expression silencing to constraining DNA replication and repair. Inside the nucleus, heterochromatin segregates spatially from euchromatin and is localized preferentially toward the nuclear periphery and surrounding the nucleolus. Despite being an abundant nuclear compartment, little is known about how heterochromatin regulates and participates in the mechanisms driving genome organization. Here, we review pioneer and recent evidence that explores the functional role of heterochromatin in the formation of distinct chromatin compartments and how failure of the molecular mechanisms forming heterochromatin leads to disarray of genome conformation and disease.
Collapse
Affiliation(s)
- Andrés Penagos-Puig
- Department of Molecular Genetics, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Department of Molecular Genetics, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
14
|
Distinct features of nucleolus-associated domains in mouse embryonic stem cells. Chromosoma 2020; 129:121-139. [PMID: 32219510 DOI: 10.1007/s00412-020-00734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
Heterochromatin in eukaryotic interphase cells frequently localizes to the nucleolar periphery (nucleolus-associated domains (NADs)) and the nuclear lamina (lamina-associated domains (LADs)). Gene expression in somatic cell NADs is generally low, but NADs have not been characterized in mammalian stem cells. Here, we generated the first genome-wide map of NADs in mouse embryonic stem cells (mESCs) via deep sequencing of chromatin associated with biochemically purified nucleoli. As we had observed in mouse embryonic fibroblasts (MEFs), the large type I subset of NADs overlaps with constitutive LADs and is enriched for features of constitutive heterochromatin, including late replication timing and low gene density and expression levels. Conversely, the type II NAD subset overlaps with loci that are not lamina-associated, but in mESCs, type II NADs are much less abundant than in MEFs. mESC NADs are also much less enriched in H3K27me3 modified regions than are NADs in MEFs. Additionally, comparision of MEF and mESC NADs revealed enrichment of developmentally regulated genes in cell-type-specific NADs. Together, these data indicate that NADs are a developmentally dynamic component of heterochromatin. These studies implicate association with the nucleolar periphery as a mechanism for developmentally regulated gene expression and will facilitate future studies of NADs during mESC differentiation.
Collapse
|
15
|
Shoaib M, Nair N, Sørensen CS. Chromatin Landscaping At Mitotic Exit Orchestrates Genome Function. Front Genet 2020; 11:103. [PMID: 32158468 PMCID: PMC7052122 DOI: 10.3389/fgene.2020.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/29/2020] [Indexed: 11/23/2022] Open
Abstract
Chromatin architecture is highly dynamic during different phases of cell cycle to accommodate DNA-based processes. This is particularly obvious during mitotic exit, where highly condensed rod-like chromatids need to be rapidly decondensed. Such chromatin structural transitions are tightly controlled and organized as any perturbance in this dynamic process can lead to genome dysfunction which may culminate in loss of cellular fitness. However, the mechanisms underlying cell cycle-dependent chromatin structural changes are not fully understood. In this mini review, we highlight our current knowledge of chromatin structural organization, focusing on mitotic exit. In this regard, we examine how nuclear processes are orchestrated during chromatin unfolding and compartmentalization and discuss the critical importance of cell cycle-controlled chromatin landscaping in maintaining genome integrity.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nidhi Nair
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 PMCID: PMC11567694 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
17
|
Quan H, Yang Y, Liu S, Tian H, Xue Y, Gao YQ. Chromatin structure changes during various processes from a DNA sequence view. Curr Opin Struct Biol 2019; 62:1-8. [PMID: 31765966 DOI: 10.1016/j.sbi.2019.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Chromatin mainly consists of protein and DNA, and the sequence information of DNA contributes to controlling the spatial structure of chromatin. Genome-wide contact patterns of chromosome at high precision uncover fine structural properties, conductive to exploring underlying mechanisms on structure establishment and function realization for chromatin. In this short review, we describe changes of chromatin structure during various biological processes from a DNA sequence view, with an increase of the overall domain segregation from birth to senescence and establishment of cell identity related cross-domain contacts. Segregation patterns vary with cell stage and genomic distance. Meanwhile, possible effects of cell cycle, temperature, nuclear lamina and nucleolus on chromatin structure are discussed. At last, important roles of transcription factors and other proteins in proper chromatin organization are also discussed.
Collapse
Affiliation(s)
- Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sirui Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Cerqueira AV, Lemos B. Ribosomal DNA and the Nucleolus as Keystones of Nuclear Architecture, Organization, and Function. Trends Genet 2019; 35:710-723. [PMID: 31447250 DOI: 10.1016/j.tig.2019.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022]
Abstract
The multicopy ribosomal DNA (rDNA) array gives origin to the nucleolus, a large nonmembrane-bound organelle that occupies a substantial volume within the cell nucleus. The rDNA/nucleolus has emerged as a coordinating hub in which seemingly disparate cellular functions converge, and from which a variety of cellular and organismal phenotypes emerge. However, the role of the nucleolus as a determinant and organizer of nuclear architecture and other epigenetic states of the genome is not well understood. We discuss the role of rDNA and the nucleolus in nuclear organization and function - from nucleolus-associated domains (NADs) to the regulation of imprinted loci and X chromosome inactivation, as well as rDNA contact maps that anchor and position the rDNA relative to the rest of the genome. The influence of the nucleolus on nuclear organization undoubtedly modulates diverse biological processes from metabolism to cell proliferation, genome-wide gene expression, maintenance of epigenetic states, and aging.
Collapse
Affiliation(s)
- Amanda V Cerqueira
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Miura H, Takahashi S, Poonperm R, Tanigawa A, Takebayashi SI, Hiratani I. Single-cell DNA replication profiling identifies spatiotemporal developmental dynamics of chromosome organization. Nat Genet 2019; 51:1356-1368. [PMID: 31406346 DOI: 10.1038/s41588-019-0474-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/26/2019] [Indexed: 01/09/2023]
Abstract
In mammalian cells, chromosomes are partitioned into megabase-sized topologically associating domains (TADs). TADs can be in either A (active) or B (inactive) subnuclear compartments, which exhibit early and late replication timing (RT), respectively. Here, we show that A/B compartments change coordinately with RT changes genome wide during mouse embryonic stem cell (mESC) differentiation. While A to B compartment changes and early to late RT changes were temporally inseparable, B to A changes clearly preceded late to early RT changes and transcriptional activation. Compartments changed primarily by boundary shifting, altering the compartmentalization of TADs facing the A/B compartment interface, which was conserved during reprogramming and confirmed in individual cells by single-cell Repli-seq. Differentiating mESCs altered single-cell Repli-seq profiles gradually but uniformly, transiently resembling RT profiles of epiblast-derived stem cells (EpiSCs), suggesting that A/B compartments might also change gradually but uniformly toward a primed pluripotent state. These results provide insights into how megabase-scale chromosome organization changes in individual cells during differentiation.
Collapse
Affiliation(s)
- Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akie Tanigawa
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate Schoold of Bioresources, Mie University, Tsu, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology and Center for Biosystems Dynamics Research, Kobe, Japan. .,Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
20
|
Vertii A, Ou J, Yu J, Yan A, Pagès H, Liu H, Zhu LJ, Kaufman PD. Two contrasting classes of nucleolus-associated domains in mouse fibroblast heterochromatin. Genome Res 2019; 29:1235-1249. [PMID: 31201210 PMCID: PMC6673712 DOI: 10.1101/gr.247072.118] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 06/10/2019] [Indexed: 01/15/2023]
Abstract
In interphase eukaryotic cells, almost all heterochromatin is located adjacent to the nucleolus or to the nuclear lamina, thus defining nucleolus-associated domains (NADs) and lamina-associated domains (LADs), respectively. Here, we determined the first genome-scale map of murine NADs in mouse embryonic fibroblasts (MEFs) via deep sequencing of chromatin associated with purified nucleoli. We developed a Bioconductor package called NADfinder and demonstrated that it identifies NADs more accurately than other peak-calling tools, owing to its critical feature of chromosome-level local baseline correction. We detected two distinct classes of NADs. Type I NADs associate frequently with both the nucleolar periphery and the nuclear lamina, and generally display characteristics of constitutive heterochromatin, including late DNA replication, enrichment of H3K9me3, and little gene expression. In contrast, Type II NADs associate with nucleoli but do not overlap with LADs. Type II NADs tend to replicate earlier, display greater gene expression, and are more often enriched in H3K27me3 than Type I NADs. The nucleolar associations of both classes of NADs were confirmed via DNA-FISH, which also detected Type I but not Type II probes enriched at the nuclear lamina. Type II NADs are enriched in distinct gene classes, including factors important for differentiation and development. In keeping with this, we observed that a Type II NAD is developmentally regulated, and present in MEFs but not in undifferentiated embryonic stem (ES) cells.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jun Yu
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Aimin Yan
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Hervé Pagès
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | - Haibo Liu
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cellular and Cancer Biology, Program in Bioinformatics and Integrative Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cellular and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
21
|
Genome Organization in and around the Nucleolus. Cells 2019; 8:cells8060579. [PMID: 31212844 PMCID: PMC6628108 DOI: 10.3390/cells8060579] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
The nucleolus is the largest substructure in the nucleus, where ribosome biogenesis takes place, and forms around the nucleolar organizer regions (NORs) that comprise ribosomal RNA (rRNA) genes. Each cell contains hundreds of rRNA genes, which are organized in three distinct chromatin and transcriptional states—silent, inactive and active. Increasing evidence indicates that the role of the nucleolus and rRNA genes goes beyond the control of ribosome biogenesis. Recent results highlighted the nucleolus as a compartment for the location and regulation of repressive genomic domains and, together with the nuclear lamina, represents the hub for the organization of the inactive heterochromatin. In this review, we aim to describe the crosstalk between the nucleolus and the rest of the genome and how distinct rRNA gene chromatin states affect nucleolus structure and are implicated in genome stability, genome architecture, and cell fate decision.
Collapse
|
22
|
van Steensel B, Furlong EEM. The role of transcription in shaping the spatial organization of the genome. Nat Rev Mol Cell Biol 2019; 20:327-337. [PMID: 30886333 PMCID: PMC7116054 DOI: 10.1038/s41580-019-0114-6] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spatial organization of the genome into compartments and topologically associated domains can have an important role in the regulation of gene expression. But could gene expression conversely regulate genome organization? Here, we review recent studies that assessed the requirement of transcription and/or the transcription machinery for the establishment or maintenance of genome topology. The results reveal different requirements at different genomic scales. Transcription is generally not required for higher-level genome compartmentalization, has only moderate effects on domain organization and is not sufficient to create new domain boundaries. However, on a finer scale, transcripts or transcription does seem to have a role in the formation of subcompartments and subdomains and in stabilizing enhancer-promoter interactions. Recent evidence suggests a dynamic, reciprocal interplay between fine-scale genome organization and transcription, in which each is able to modulate or reinforce the activity of the other.
Collapse
Affiliation(s)
- Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, Netherlands.
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
23
|
Hiratani I, Takahashi S. DNA Replication Timing Enters the Single-Cell Era. Genes (Basel) 2019; 10:genes10030221. [PMID: 30884743 PMCID: PMC6470765 DOI: 10.3390/genes10030221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
In mammalian cells, DNA replication timing is controlled at the level of megabase (Mb)-sized chromosomal domains and correlates well with transcription, chromatin structure, and three-dimensional (3D) genome organization. Because of these properties, DNA replication timing is an excellent entry point to explore genome regulation at various levels and a variety of studies have been carried out over the years. However, DNA replication timing studies traditionally required at least tens of thousands of cells, and it was unclear whether the replication domains detected by cell population analyses were preserved at the single-cell level. Recently, single-cell DNA replication profiling methods became available, which revealed that the Mb-sized replication domains detected by cell population analyses were actually well preserved in individual cells. In this article, we provide a brief overview of our current knowledge on DNA replication timing regulation in mammals based on cell population studies, outline the findings from single-cell DNA replication profiling, and discuss future directions and challenges.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
24
|
Zlotina A, Maslova A, Kosyakova N, Al-Rikabi ABH, Liehr T, Krasikova A. Heterochromatic regions in Japanese quail chromosomes: comprehensive molecular-cytogenetic characterization and 3D mapping in interphase nucleus. Chromosome Res 2018; 27:253-270. [DOI: 10.1007/s10577-018-9597-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022]
|
25
|
Abstract
The nucleolus as site of ribosome biogenesis holds a pivotal role in cell metabolism. It is composed of ribosomal DNA (rDNA), which is present as tandem arrays located in nucleolus organizer regions (NORs). In interphase cells, rDNA can be found inside and adjacent to nucleoli and the location is indicative for transcriptional activity of ribosomal genes-inactive rDNA (outside) versus active one (inside). Moreover, the nucleolus itself acts as a spatial organizer of non-nucleolar chromatin. Microscopy-based approaches offer the possibility to explore the spatially distinct localization of the different DNA populations in relation to the nucleolar structure. Recent technical developments in microscopy and preparatory methods may further our understanding of the functional architecture of nucleoli. This review will attempt to summarize the current understanding of mammalian nucleolar chromatin organization as seen from a microscopist's perspective.
Collapse
Affiliation(s)
- Christian Schöfer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| | - Klara Weipoltshammer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| |
Collapse
|
26
|
Shevelyov YY, Ulianov SV. Role of Nuclear Lamina in Gene Repression and Maintenance of Chromosome Architecture in the Nucleus. BIOCHEMISTRY (MOSCOW) 2018; 83:359-369. [DOI: 10.1134/s0006297918040077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Sun X, Bizhanova A, Matheson TD, Yu J, Zhu LJ, Kaufman PD. Ki-67 Contributes to Normal Cell Cycle Progression and Inactive X Heterochromatin in p21 Checkpoint-Proficient Human Cells. Mol Cell Biol 2017; 37:e00569-16. [PMID: 28630280 PMCID: PMC5559680 DOI: 10.1128/mcb.00569-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/18/2016] [Accepted: 06/06/2017] [Indexed: 11/20/2022] Open
Abstract
The Ki-67 protein is widely used as a tumor proliferation marker. However, whether Ki-67 affects cell cycle progression has been controversial. Here we demonstrate that depletion of Ki-67 in human hTERT-RPE1, WI-38, IMR90, and hTERT-BJ cell lines and primary fibroblast cells slowed entry into S phase and coordinately downregulated genes related to DNA replication. Some gene expression changes were partially relieved in Ki-67-depleted hTERT-RPE1 cells by codepletion of the Rb checkpoint protein, but more thorough suppression of the transcriptional and cell cycle defects was observed upon depletion of the cell cycle inhibitor p21. Notably, induction of p21 upon depletion of Ki-67 was a consistent hallmark of cell types in which transcription and cell cycle distribution were sensitive to Ki-67; these responses were absent in cells that did not induce p21. Furthermore, upon Ki-67 depletion, a subset of inactive X (Xi) chromosomes in female hTERT-RPE1 cells displayed several features of compromised heterochromatin maintenance, including decreased H3K27me3 and H4K20me1 labeling. These chromatin alterations were limited to Xi chromosomes localized away from the nuclear lamina and were not observed in checkpoint-deficient 293T cells. Altogether, our results indicate that Ki-67 integrates normal S-phase progression and Xi heterochromatin maintenance in p21 checkpoint-proficient human cells.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aizhan Bizhanova
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Timothy D Matheson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
28
|
Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. Cell 2017; 169:780-791. [PMID: 28525751 DOI: 10.1016/j.cell.2017.04.022] [Citation(s) in RCA: 713] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 01/06/2023]
Abstract
In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside the nucleus and have been associated with gene repression. Here, we discuss the properties of LADs, the molecular mechanisms that determine their association with the nuclear lamina, their dynamic links with other nuclear compartments, and their proposed roles in gene regulation.
Collapse
|
29
|
Matheson TD, Kaufman PD. Grabbing the genome by the NADs. Chromosoma 2016; 125:361-71. [PMID: 26174338 PMCID: PMC4714962 DOI: 10.1007/s00412-015-0527-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/31/2022]
Abstract
The regions of the genome that interact frequently with the nucleolus have been termed nucleolar-associated domains (NADs). Deep sequencing and DNA-fluorescence in situ hybridization (FISH) experiments have revealed that these domains are enriched for repetitive elements, regions of the inactive X chromosome (Xi), and several RNA polymerase III-transcribed genes. NADs are often marked by chromatin modifications characteristic of heterochromatin, including H3K27me3, H3K9me3, and H4K20me3, and artificial targeting of genes to this area is correlated with reduced expression. It has therefore been hypothesized that NAD localization to the nucleolar periphery contributes to the establishment and/or maintenance of heterochromatic silencing. Recently published studies from several multicellular eukaryotes have begun to reveal the trans-acting factors involved in NAD localization, including the insulator protein CCCTC-binding factor (CTCF), chromatin assembly factor (CAF)-1 subunit p150, several nucleolar proteins, and two long non-coding RNAs (lncRNAs). The mechanisms by which these factors coordinate with one another in regulating NAD localization and/or silencing are still unknown. This review will summarize recently published studies, discuss where additional research is required, and speculate about the mechanistic and functional implications of genome organization around the nucleolus.
Collapse
Affiliation(s)
- Timothy D Matheson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Paul D Kaufman
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
30
|
Genome sequence of Candida versatilis and comparative analysis with other yeast. J Ind Microbiol Biotechnol 2016; 43:1131-8. [PMID: 27234221 DOI: 10.1007/s10295-016-1764-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022]
Abstract
The genome of Candida versatilis was sequenced to understand its characteristics in soy sauce fermentation. The genome size of C. versatilis was 9.7 Mb, the content of G + C was 39.74 %, scaffolds of N50 were 1,229,640 bp in length, containing 4711 gene. There were predicted 269 tRNA genes and 2201 proteins with clear function. Moreover, the genome information of C. versatilis was compared with another salt-tolerant yeast Zygosaccharomyces rouxii and the model organism Saccharomyces cerevisiae. C. versatilis and Z. rouxii genome size was close and both smaller than 12.1 for the Mb of S. cerevisiae. Using the OrthoMCL protein, three genomes were divided into 4663 groups. There were about 3326 homologous proteins in C. versatilis, Z. rouxii and S. cerevisiae.
Collapse
|
31
|
Rivera-Mulia JC, Gilbert DM. Replication timing and transcriptional control: beyond cause and effect-part III. Curr Opin Cell Biol 2016; 40:168-178. [PMID: 27115331 DOI: 10.1016/j.ceb.2016.03.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
DNA replication is essential for faithful transmission of genetic information and is intimately tied to chromosome structure and function. Genome duplication occurs in a defined temporal order known as the replication-timing (RT) program, which is regulated during the cell cycle and development in discrete units referred to as replication domains (RDs). RDs correspond to topologically-associating domains (TADs) and are spatio-temporally compartmentalized in the nucleus. While improvements in experimental tools have begun to reveal glimpses of causality, they have also unveiled complex context-dependent relationships that challenge long recognized correlations of RT to chromatin organization and gene regulation. In particular, RDs/TADs that switch RT during development march to the beat of a different drummer.
Collapse
Affiliation(s)
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
32
|
Politz JCR, Scalzo D, Groudine M. The redundancy of the mammalian heterochromatic compartment. Curr Opin Genet Dev 2015; 37:1-8. [PMID: 26706451 DOI: 10.1016/j.gde.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/05/2023]
Abstract
Two chromatin compartments are present in most mammalian cells; the first contains primarily euchromatic, early replicating chromatin and the second, primarily late-replicating heterochromatin, which is the subject of this review. Heterochromatin is concentrated in three intranuclear regions: the nuclear periphery, the perinucleolar space and in pericentromeric bodies. We review recent evidence demonstrating that the heterochromatic compartment is critically involved in global nuclear organization and the maintenance of genome stability, and discuss models regarding how this compartment is formed and maintained. We also evaluate our understanding of how heterochromatic sequences (herein named heterochromatic associated regions (HADs)) might be tethered within these regions and review experiments that reveal the stochastic nature of individual HAD positioning within the compartment. These investigations suggest a substantial level of functional redundancy within the heterochromatic compartment.
Collapse
Affiliation(s)
| | - David Scalzo
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mark Groudine
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| |
Collapse
|