1
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Zheng Y, Zhang C, Lai Z, Zeng Y, Li J, Zhang D, Liu X. Redirecting natural killer cells to potentiate adoptive immunotherapy in solid tumors through stabilized Y-type bispecific aptamer. NANOSCALE 2021; 13:11279-11288. [PMID: 34156057 DOI: 10.1039/d1nr00836f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Modulating interactions between immune effector cells and tumor cells in vivo using a bispecific aptamer (Ap) is a promising strategy for cancer immunotherapy. However, it remains a technical challenge owing to the complex and dynamic internal environment accompanied by severe degradation. Herein, by using a Y-shaped DNA scaffold, a bispecific and stabilized Y-type Ap is designed to redirect natural killer (NK) cells to enhance adoptive immunotherapy of hepatocellular carcinoma (HCC) solid tumors. Y-type Ap is constituted by the HCC-specific Ap TLS11a linked with the CD16-specific Ap through a Y-shaped DNA scaffold. Owing to the rigid structure, Y-type Ap shows high stability in 10% serum for over 72 h and resistance to denaturation by 8 M urea. Additionally, the Y-type Ap exhibits more potent avidity to bind with NK cells and tumor cells both in vitro and in vivo, resulting in higher cytokine secretion and excellent antitumor efficiency. Collectively, this study offers a translational platform for constructing stable bispecific Ap, offering considerable potential to enhance adoptive immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | | | | | | | | | | | | |
Collapse
|
3
|
Mascarelli DE, Rosa RSM, Toscaro JM, Semionatto IF, Ruas LP, Fogagnolo CT, Lima GC, Bajgelman MC. Boosting Antitumor Response by Costimulatory Strategies Driven to 4-1BB and OX40 T-cell Receptors. Front Cell Dev Biol 2021; 9:692982. [PMID: 34277638 PMCID: PMC8277962 DOI: 10.3389/fcell.2021.692982] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy explores several strategies to enhance the host immune system’s ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti–programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte–associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control. It is well known that costimulatory and coinhibitory pathways are critical regulators in the activation of T cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory molecules also plays an important role in T-cell activation and antitumor response. Therefore, molecules driven to costimulatory pathways constitute promising targets in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors on lymphocytes surface may transduce signals that control the survival, proliferation, differentiation, and effector functions of these immune cells. Among the members of the tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical studies have been carried out targeting these molecules, with agonist monoclonal antibodies, and preclinical studies exploring their ligands and other experimental approaches. In this review, we discuss functional aspects of 4-1BB and OX40 costimulation, as well as the progress of its application in immunotherapies.
Collapse
Affiliation(s)
- Daniele E Mascarelli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rhubia S M Rosa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jessica M Toscaro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isadora F Semionatto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana P Ruas
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Carolinne T Fogagnolo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel C Lima
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Pro Rectory of Graduation, University of São Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Fu Z, Xiang J. Aptamers, the Nucleic Acid Antibodies, in Cancer Therapy. Int J Mol Sci 2020; 21:ijms21082793. [PMID: 32316469 PMCID: PMC7215806 DOI: 10.3390/ijms21082793] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
The arrival of the monoclonal antibody (mAb) technology in the 1970s brought with it the hope of conquering cancers to the medical community. However, mAbs, on the whole, did not achieve the expected wonder in cancer therapy although they do have demonstrated successfulness in the treatment of a few types of cancers. In 1990, another technology of making biomolecules capable of specific binding appeared. This technique, systematic evolution of ligands by exponential enrichment (SELEX), can make aptamers, single-stranded DNAs or RNAs that bind targets with high specificity and affinity. Aptamers have some advantages over mAbs in therapeutic uses particularly because they have little or no immunogenicity, which means the feasibility of repeated use and fewer side effects. In this review, the general properties of the aptamer, the advantages and limitations of aptamers, the principle and procedure of aptamer production with SELEX, particularly the undergoing studies in aptamers for cancer therapy, and selected anticancer aptamers that have entered clinical trials or are under active investigations are summarized.
Collapse
Affiliation(s)
- Zhaoying Fu
- Department of Biochemistry and Molecular Biology, College of Medicine, Yanan University, Yanan 716000, China
- Correspondence: (Z.F.); (J.X.)
| | - Jim Xiang
- Division of Oncology, University of Saskatchewan, Saskatoon, SA S7N 4H4, Canada
- Correspondence: (Z.F.); (J.X.)
| |
Collapse
|
5
|
Woroniecka KI, Rhodin KE, Dechant C, Cui X, Chongsathidkiet P, Wilkinson D, Waibl-Polania J, Sanchez-Perez L, Fecci PE. 4-1BB Agonism Averts TIL Exhaustion and Licenses PD-1 Blockade in Glioblastoma and Other Intracranial Cancers. Clin Cancer Res 2019; 26:1349-1358. [PMID: 31871298 DOI: 10.1158/1078-0432.ccr-19-1068] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023]
Abstract
PURPOSE The success of checkpoint blockade against glioblastoma (GBM) has been disappointing. Anti-PD-1 strategies may be hampered by severe T-cell exhaustion. We sought to develop a strategy that might license new efficacy for checkpoint blockade in GBM. EXPERIMENTAL DESIGN We characterized 4-1BB expression in tumor-infiltrating lymphocytes (TIL) from human GBM. We implanted murine tumor models including glioma (CT2A), melanoma (B16), breast (E0771), and lung carcinomas intracranially and subcutaneously, characterized 4-1BB expression, and tested checkpoint blockade strategies in vivo. RESULTS Our data reveal that 4-1BB is frequently present on nonexhausted CD8+ TILs in human and murine GBM. In murine gliomas, 4-1BB agonism and PD-1 blockade demonstrate a synergistic survival benefit in a CD8+ T-cell-dependent manner. The combination decreases TIL exhaustion and improves TIL functionality. This strategy proves most successful against intracranial CT2A gliomas. Efficacy in all instances correlates with the levels of 4-1BB expression on CD8+ TILs, rather than with histology or with intracranial versus subcutaneous tumor location. Proffering 4-1BB expression to T cells licenses combination 4-1BB agonism and PD-1 blockade in models where TIL 4-1BB levels had previously been low and the treatment ineffective. CONCLUSIONS Although poor T-cell activation and severe T-cell exhaustion appear to be limiting factors for checkpoint blockade in GBM, 4-1BB agonism obviates these limitations and produces long-term survival when combined with anti-PD-1 therapy. Furthermore, this combination therapy is limited by TIL 4-1BB expression, but not by the intracranial compartment, and therefore may be particularly well-suited to GBM.
Collapse
Affiliation(s)
- Karolina I Woroniecka
- Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Duke University School of Medicine, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Kristen E Rhodin
- Duke University School of Medicine, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Cosette Dechant
- Duke University School of Medicine, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Xiuyu Cui
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Daniel Wilkinson
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Jessica Waibl-Polania
- Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Luis Sanchez-Perez
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Peter E Fecci
- Department of Pathology, Duke University Medical Center, Durham, North Carolina. .,Duke University School of Medicine, Durham, North Carolina.,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
6
|
Wei J, Marisetty A, Schrand B, Gabrusiewicz K, Hashimoto Y, Ott M, Grami Z, Kong LY, Ling X, Caruso H, Zhou S, Wang YA, Fuller GN, Huse J, Gilboa E, Kang N, Huang X, Verhaak R, Li S, Heimberger AB. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Invest 2018; 129:137-149. [PMID: 30307407 DOI: 10.1172/jci121266] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration; thus, we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immunoblotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA, and CRISPR/Cas9 techniques, followed by a series of in vitro functional migration and immunological assays. OPN gene-deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal glioblastoma multiforme (GBM) show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αvβ5 (ITGαvβ5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived and host-derived OPN were critical for glioma development. OPN deficiency in either innate immune or glioma cells resulted in a marked reduction in M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. Systemic administration in mice of 4-1BB-OPN bispecific aptamers was efficacious, increasing median survival time by 68% (P < 0.05). OPN is thus an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and has the potential to be exploited as a therapeutic target.
Collapse
Affiliation(s)
- Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brett Schrand
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Konrad Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuuri Hashimoto
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zacharia Grami
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoyang Ling
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hillary Caruso
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Gregory N Fuller
- Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason Huse
- Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Nannan Kang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Roel Verhaak
- Jackson Laboratory of Genomic Medicine, Farmington, Connecticut, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Soldevilla MM, Meraviglia-Crivelli de Caso D, Menon AP, Pastor F. Aptamer-iRNAs as Therapeutics for Cancer Treatment. Pharmaceuticals (Basel) 2018; 11:E108. [PMID: 30340426 PMCID: PMC6315413 DOI: 10.3390/ph11040108] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides (ssDNA or ssRNA) that bind and recognize their targets with high affinity and specificity due to their complex tertiary structure. Aptamers are selected by a method called SELEX (Systematic Evolution of Ligands by EXponential enrichment). This method has allowed the selection of aptamers to different types of molecules. Since then, many aptamers have been described for the potential treatment of several diseases including cancer. It has been described over the last few years that aptamers represent a very useful tool as therapeutics, especially for cancer therapy. Aptamers, thanks to their intrinsic oligonucleotide nature, present inherent advantages over other molecules, such as cell-based products. Owing to their higher tissue penetrability, safer profile, and targeting capacity, aptamers are likely to become a novel platform for the delivery of many different types of therapeutic cargos. Here we focus the review on interfering RNAs (iRNAs) as aptamer-based targeting delivered agents. We have gathered the most reliable information on aptamers as targeting and carrier agents for the specific delivery of siRNAs, shRNA, microRNAs, and antisense oligonucleotides (ASOs) published in the last few years in the context of cancer therapy.
Collapse
Affiliation(s)
- Mario M Soldevilla
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Daniel Meraviglia-Crivelli de Caso
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Ashwathi P Menon
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Fernando Pastor
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| |
Collapse
|
8
|
Zhu G, Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev 2018; 134:65-78. [PMID: 30125604 PMCID: PMC6239901 DOI: 10.1016/j.addr.2018.08.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/12/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
Precision medicine holds great promise to harness genetic and epigenetic cues for targeted treatment of a variety of diseases, ranging from many types of cancers, neurodegenerative diseases, to cardiovascular diseases. The proteomic profiles resulting from the unique genetic and epigenetic signatures represent a class of relatively well accessible molecular targets for both interrogation (e.g., diagnosis, prognosis) and intervention (e.g., targeted therapy) of these diseases. Aptamers are promising for such applications by specific binding with cognate disease biomarkers. Nucleic acid aptamers are a class of DNA or RNA with unique three-dimensional conformations that allow them to specifically bind with target molecules. Aptamers can be relatively easily screened, reproducibly manufactured, programmably designed, and chemically modified for various biomedical applications, including targeted therapy. Aptamers can be chemically modified to resist enzymatic degradation or optimize their pharmacological behaviors, which ensured their chemical integrity and bioavailability under physiological conditions. In this review, we will focus on recent progress and discuss the challenges and opportunities in the research areas of aptamer-based targeted therapy in the forms of aptamer therapeutics and aptamer-drug conjugates (ApDCs).
Collapse
Affiliation(s)
- Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer Therapeutics in Cancer: Current and Future. Cancers (Basel) 2018; 10:cancers10030080. [PMID: 29562664 PMCID: PMC5876655 DOI: 10.3390/cancers10030080] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamer-related technologies represent a revolutionary advancement in the capacity to rapidly develop new classes of targeting ligands. Structurally distinct RNA and DNA oligonucleotides, aptamers mimic small, protein-binding molecules and exhibit high binding affinity and selectivity. Although their molecular weight is relatively small—approximately one-tenth that of monoclonal antibodies—their complex tertiary folded structures create sufficient recognition surface area for tight interaction with target molecules. Additionally, unlike antibodies, aptamers can be readily chemically synthesized and modified. In addition, aptamers’ long storage period and low immunogenicity are favorable properties for clinical utility. Due to their flexibility of chemical modification, aptamers are conjugated to other chemical entities including chemotherapeutic agents, siRNA, nanoparticles, and solid phase surfaces for therapeutic and diagnostic applications. However, as relatively small sized oligonucleotides, aptamers present several challenges for successful clinical translation. Their short plasma half-lives due to nuclease degradation and rapid renal excretion necessitate further structural modification of aptamers for clinical application. Since the US Food and Drug Administration (FDA) approval of the first aptamer drug, Macugen® (pegaptanib), which treats wet-age-related macular degeneration, several aptamer therapeutics for oncology have followed and shown promise in pre-clinical models as well as clinical trials. This review discusses the advantages and challenges of aptamers and introduces therapeutic aptamers under investigation and in clinical trials for cancer treatments.
Collapse
Affiliation(s)
- Yoshihiro Morita
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Macall Leslie
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Hiroyasu Kameyama
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - David E Volk
- McGovern Medical School, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, USA.
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, 940 SL Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
10
|
Zhuo Z, Yu Y, Wang M, Li J, Zhang Z, Liu J, Wu X, Lu A, Zhang G, Zhang B. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int J Mol Sci 2017; 18:2142. [PMID: 29036890 PMCID: PMC5666824 DOI: 10.3390/ijms18102142] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Aptamers are short DNA/RNA oligonucleotides capable of binding to target molecules with high affinity and specificity. The process of selecting an aptamer is called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Thanks to the inherit merits, aptamers have been used in a wide range of applications, including disease diagnosis, targeted delivery agents and therapeutic uses. To date, great achievements regarding the selection, modifications and application of aptamers have been made. However, few aptamer-based products have already successfully entered into clinical and industrial use. Besides, it is still a challenge to obtain aptamers with high affinity in a more efficient way. Thus, it is important to comprehensively review the current shortage and achievement of aptamer-related technology. In this review, we first present the limitations and notable advances of aptamer selection. Then, we compare the different methods used in the kinetic characterization of aptamers. We also discuss the impetus and developments of the clinical application of aptamers.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Maolin Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Jie Li
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Zongkang Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Xiaohao Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Baoting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
11
|
Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology 2017; 6:e1371896. [PMID: 29209572 PMCID: PMC5706611 DOI: 10.1080/2162402x.2017.1371896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The goal of cancer immunotherapy is to establish new or boost pre-existing anticancer immune responses that eradicate malignant cells while generating immunological memory to prevent disease relapse. Over the past few years, immunomodulatory monoclonal antibodies (mAbs) that block co-inhibitory receptors on immune effectors cells - such as cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) - or their ligands - such as CD274 (best known as PD-L1) - have proven very successful in this sense. As a consequence, many of such immune checkpoint blockers (ICBs) have already entered the clinical practice for various oncological indications. Considerable attention is currently being attracted by a second group of immunomodulatory mAbs, which are conceived to activate co-stimulatory receptors on immune effector cells. Here, we discuss the mechanisms of action of these immunostimulatory mAbs and summarize recent progress in their preclinical and clinical development.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rienk Offringa
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- DKFZ-Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Aptamers: A Feasible Technology in Cancer Immunotherapy. J Immunol Res 2016; 2016:1083738. [PMID: 27413756 PMCID: PMC4931050 DOI: 10.1155/2016/1083738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022] Open
Abstract
Aptamers are single-chained RNA or DNA oligonucleotides (ODNs) with three-dimensional folding structures which allow them to bind to their targets with high specificity. Aptamers normally show affinities comparable to or higher than that of antibodies. They are chemically synthesized and therefore less expensive to manufacture and produce. A variety of aptamers described to date have been shown to be reliable in modulating immune responses against cancer by either blocking or activating immune receptors. Some of them have been conjugated to other molecules to target the immune system and reduce off-target side effects. Despite the success of first-line treatments against cancer, the elevated number of relapsing cases and the tremendous side effects shown by the commonly used agents hinder conventional treatments against cancer. The advantages provided by aptamers could enhance the therapeutic index of a given strategy and therefore enhance the antitumor effect. Here we recapitulate the provided benefits of aptamers with immunomodulatory activity described to date in cancer therapy and the benefits that aptamer-based immunotherapy could provide either alone or combined with first-line treatments in cancer therapy.
Collapse
|
13
|
Hodges TR, Ferguson SD, Caruso HG, Kohanbash G, Zhou S, Cloughesy TF, Berger MS, Poste GH, Khasraw M, Ba S, Jiang T, Mikkelson T, Yung WKA, de Groot JF, Fine H, Cantley LC, Mellinghoff IK, Mitchell DA, Okada H, Heimberger AB. Prioritization schema for immunotherapy clinical trials in glioblastoma. Oncoimmunology 2016; 5:e1145332. [PMID: 27471611 DOI: 10.1080/2162402x.2016.1145332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Emerging immunotherapeutic strategies for the treatment of glioblastoma (GBM) such as dendritic cell (DC) vaccines, heat shock proteins, peptide vaccines, and adoptive T-cell therapeutics, to name a few, have transitioned from the bench to clinical trials. With upcoming strategies and developing therapeutics, it is challenging to critically evaluate the practical, clinical potential of individual approaches and to advise patients on the most promising clinical trials. METHODS The authors propose a system to prioritize such therapies in an organized and data-driven fashion. This schema is based on four categories of factors: antigenic target robustness, immune-activation and -effector responses, preclinical vetting, and early evidence of clinical response. Each of these categories is subdivided to focus on the most salient elements for developing a successful immunotherapeutic approach for GBM, and a numerical score is generated. RESULTS The Score Card reveals therapeutics that have the most robust data to support their use, provides a reference prioritization score, and can be applied in a reiterative fashion with emerging data. CONCLUSIONS The authors hope that this schema will give physicians an evidence-based and rational framework to make the best referral decisions to better guide and serve this patient population.
Collapse
Affiliation(s)
- Tiffany R Hodges
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Hillary G Caruso
- The Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Gary Kohanbash
- Department of Neurosurgery, the University of California at San Francisco , San Francisco, USA
| | - Shouhao Zhou
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Timothy F Cloughesy
- Department of Neuro-Oncology, the University of California at Los Angeles , Los Angeles, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery, the University of California at San Francisco , San Francisco, USA
| | | | | | - Sujuan Ba
- The National Foundation for Cancer Research, Bethesda, MD, USA, Asian Fund for Cancer Research , Hong Kong, People's Republic of China
| | - Tao Jiang
- Department of Neurosurgery, Tiantan Hospital, Capital Medical University , Beijing, China
| | - Tom Mikkelson
- Department of Neurosurgery, Henry Ford Health System , Detroit, MI, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Howard Fine
- Division of Neuro-Oncology, Weill Cornell Medical College , New York, NY, USA
| | - Lewis C Cantley
- Department of Systems Biology, Harvard Medical School , Boston, MA, USA
| | - Ingo K Mellinghoff
- Department of Neurology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Duane A Mitchell
- Department of Neurosurgery, University of Florida , Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, the University of California at San Francisco , San Francisco, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
14
|
Kong LY, Wei J, Fuller GN, Schrand B, Gabrusiewicz K, Zhou S, Rao G, Calin G, Gilboa E, Heimberger AB. Tipping a favorable CNS intratumoral immune response using immune stimulation combined with inhibition of tumor-mediated immune suppression. Oncoimmunology 2015; 5:e1117739. [PMID: 27467917 DOI: 10.1080/2162402x.2015.1117739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
High-grade gliomas are notoriously heterogeneous regarding antigen expression, effector responses, and immunosuppressive mechanisms. Therefore, combinational immune therapeutic approaches are more likely to impact a greater number of patients and result in longer, durable responses. We have previously demonstrated the monotherapeutic effects of miR-124, which inhibits the signal transducer and activator of transcription 3 (STAT3) immune suppressive pathway, and immune stimulatory 4-1BB aptamers against a variety of malignancies, including genetically engineered immune competent high-grade gliomas. To evaluate potential synergy, we tested an immune stimulatory aptamer together with microRNA-124 (miRNA-124), which blocks tumor-mediated immune suppression, and found survival to be markedly enhanced, including beyond that produced by monotherapy. The synergistic activity appeared to be not only secondary to enhanced CD3(+) cell numbers but also to reduced macrophage immune tumor trafficking, indicating that a greater therapeutic benefit can be achieved with approaches that both induce immune activation and inhibit tumor-mediated immune suppression within the central nervous system (CNS) tumors.
Collapse
Affiliation(s)
- Ling-Yuan Kong
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Jun Wei
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Gregory N Fuller
- Neuropathology, University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Brett Schrand
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine , Miami, FL, USA
| | - Konrad Gabrusiewicz
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Shouhao Zhou
- Biostatistics, University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Ganesh Rao
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - George Calin
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Eli Gilboa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine , Miami, FL, USA
| | - Amy B Heimberger
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
15
|
Soule EE, Bompiani KM, Woodruff RS, Sullenger BA. Targeting Two Coagulation Cascade Proteases with a Bivalent Aptamer Yields a Potent and Antidote-Controllable Anticoagulant. Nucleic Acid Ther 2015; 26:1-9. [PMID: 26584417 DOI: 10.1089/nat.2015.0565] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Potent and rapid-onset anticoagulation is required for several clinical settings, including cardiopulmonary bypass surgery. In addition, because anticoagulation is associated with increased bleeding following surgery, the ability to rapidly reverse such robust anticoagulation is also important. Previously, we observed that no single aptamer was as potent as heparin for anticoagulating blood. However, we discovered that combinations of two aptamers were as potent as heparin. Herein, we sought to combine two individual anticoagulant aptamers into a single bivalent RNA molecule in an effort to generate a single molecule that retained the potent anticoagulant activity of the combination of individual aptamers. We created four bivalent aptamers that can inhibit Factor X/Xa and prothrombin/thrombin and anticoagulate plasma, as well as the combination of individual aptamers. Detailed characterization of the shortest bivalent aptamer indicates that each aptamer retains full binding and functional activity when presented in the bivalent context. Finally, reversal of this bivalent aptamer with a single antidote was explored, and anticoagulant activity could be rapidly turned off in a dose-dependent manner. These studies demonstrate that bivalent anticoagulant aptamers represent a novel and potent approach to actively and reversibly control coagulation.
Collapse
Affiliation(s)
- Erin E Soule
- Departments of Surgery and Pharmacology and Cancer Biology, Duke University Medical Center , Durham, North Carolina
| | - Kristin M Bompiani
- Departments of Surgery and Pharmacology and Cancer Biology, Duke University Medical Center , Durham, North Carolina
| | - Rebecca S Woodruff
- Departments of Surgery and Pharmacology and Cancer Biology, Duke University Medical Center , Durham, North Carolina
| | - Bruce A Sullenger
- Departments of Surgery and Pharmacology and Cancer Biology, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|