1
|
Vosála O, Krátký J, Matoušková P, Rychlá N, Štěrbová K, Raisová Stuchlíková L, Vokřál I, Skálová L. Biotransformation of anthelmintics in nematodes in relation to drug resistance. Int J Parasitol Drugs Drug Resist 2025; 27:100579. [PMID: 39827513 PMCID: PMC11787565 DOI: 10.1016/j.ijpddr.2025.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance. The present study summarizes the current knowledge regarding the biotransformation of anthelmintics, specifically drugs used to treat mainly nematodes, a group of parasites that are a significant health concern for humans and animals. The main biotransformation enzymes are introduced and their roles in anthelmintics metabolism in nematodes are discussed with a particular focus on their potential participation in drug resistance. Similarly, the inducibility of biotransformation enzymes with sublethal doses of anthelmintics is presented in view of its potential contribution to drug resistance development. In the conclusion, the main tasks awaiting scientists in this area are outlined.
Collapse
Affiliation(s)
- Ondřej Vosála
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Josef Krátký
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Nikola Rychlá
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Karolína Štěrbová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové, CZ-500 05, Czech Republic.
| |
Collapse
|
2
|
Panda SK, Daemen M, Sahoo G, Luyten W. Essential Oils as Novel Anthelmintic Drug Candidates. Molecules 2022; 27:8327. [PMID: 36500419 PMCID: PMC9735941 DOI: 10.3390/molecules27238327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
Helminths, with an estimated 1.5 billion annual global infections, are one of the major health challenges worldwide. The current strategy of the World Health Organization to prevent helminth infection includes increasing hygienic awareness, providing better sanitation and preventative anthelmintic drug therapy in vulnerable populations. Nowadays, anthelmintic drugs are used heavily in livestock, both in case of infection and as a preventative measure. However, this has led to the development of resistance against several of the most common drugs, such as levamisole, ivermectin and thiabendazole. As many as 70% of the livestock in developed countries now has helminths that are drug resistant, and multiple resistance is common. Because of this, novel anthelmintics are urgently needed to help combat large-scale production losses. Prior to this review, no comprehensive review of the anthelmintic effects of essential oils and their components existed. Multiple review articles have been published on the uses of a single plant and its extracts that only briefly touch upon their anthelmintic activity. This review aims to provide a detailed overview of essential oils and their components as anthelmintic treatment against a wider variety of helminths.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar 751004, Odisha, India
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Marijn Daemen
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Jacob J, Tan G, Lange I, Saeed H, Date A, Jarvi S. In vitro efficacy of anthelmintics on Angiostrongylus cantonensis L3 larvae. Parasitology 2021; 148:240-250. [PMID: 32799943 PMCID: PMC8173162 DOI: 10.1017/s0031182020001146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
Abstract
Angiostrongylus cantonensis is the leading cause of eosinophilic meningitis worldwide, with life-threatening complications if not managed correctly. Previous in vitro studies have utilized change in motility patterns of adult female worms to assess the efficacy of anthelmintics qualitatively. However, it is the third stage larvae (L3) that are infectious to humans. With differential staining using propidium iodide penetration as the indicator of death, we can distinguish between dead and live larvae. This assay has enabled us to quantify the in vitro efficacy of nine clinically established anthelmintics on A. cantonensis L3. All drugs were tested at a 1 mm concentration. Piperazine and niclosamide were ineffective in inducing larval death; however, albendazole sulfoxide, pyrantel pamoate, diethylcarbamazine, levamisole and praziquantel were effective as compared to unexposed controls (P < 0.05). Ivermectin and moxidectin did not induce significant levels of mortality, but they considerably reduced larval motility almost immediately. This study indicates the need for further in vivo studies to determine the optimal dose and time frame for post-infection treatment with anthelmintics that demonstrated efficacy.
Collapse
Affiliation(s)
- John Jacob
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, The University of Hawai‘i at Hilo, Hawai‘i96720, USA
| | - Ghee Tan
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, The University of Hawai‘i at Hilo, Hawai‘i96720, USA
| | - Ingo Lange
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, The University of Hawai‘i at Hilo, Hawai‘i96720, USA
| | - Hiwa Saeed
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, The University of Hawai‘i at Hilo, Hawai‘i96720, USA
| | - Abhijit Date
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, The University of Hawai‘i at Hilo, Hawai‘i96720, USA
| | - Susan Jarvi
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, The University of Hawai‘i at Hilo, Hawai‘i96720, USA
| |
Collapse
|
4
|
Renahan T, Hong RL. A species-specific nematocide that results in terminal embryogenesis. ACTA ACUST UNITED AC 2017; 220:3238-3247. [PMID: 28684461 DOI: 10.1242/jeb.159665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/29/2017] [Indexed: 01/20/2023]
Abstract
Nematode-insect interactions are ubiquitous, complex and constantly changing as the host and nematode coevolve. The entomophilic nematode Pristionchus pacificus is found on a myriad beetle species worldwide, although the molecular dynamics of this relationship are largely unknown. To better understand how host cues affect P. pacificus embryogenesis, we characterized the threshold of sensitivity to the pheromone (Z)-7-tetradecen-2-one (ZTDO) by determining the minimum exposure duration and developmental window that results in P. pacificus embryonic lethality. We found early-stage embryos exposed to volatile ZTDO for as few as 4 h all display terminal embryogenesis, characterized by punctuated development up to 48 h later, with abnormal morphology and limited cavity formation. To determine if the pheromone arrests pre-hatching development by suffocating or permeabilizing the eggshells, we raised embryos under anoxic conditions and also examined eggshell permeability using the lipophilic dye FM4-64. We found that asphyxiating the embryos arrested embryogenesis in a reversible manner but did not phenocopy the effects of ZTDO exposure, whereas the ZTDO-induced disruption of embryogenesis did correlate with increased eggshell permeability. The effects of ZTDO are also highly specific, as other lipid insect compounds do not produce any detectable embryocidal effect. The high specificity and unusual teratogenic effect of ZTDO may be important in mediating the host-nematode relationship by regulating P. pacificus development.
Collapse
Affiliation(s)
- Tess Renahan
- California State University, Northridge, Department of Biology, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| | - Ray L Hong
- California State University, Northridge, Department of Biology, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| |
Collapse
|