1
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Dong Y, Srour O, Lukhovitskaya N, Makarian J, Baumberger N, Galzitskaya O, Elser D, Schepetilnikov M, Ryabova LA. Functional analogs of mammalian 4E-BPs reveal a role for TOR in global plant translation. Cell Rep 2023; 42:112892. [PMID: 37516965 DOI: 10.1016/j.celrep.2023.112892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) regulates global protein synthesis through inactivation of eIF4E-binding proteins (m4E-BPs) in response to nutrient and energy availability. Until now, 4E-BPs have been considered as metazoan inventions, and how target of rapamycin (TOR) controls cap-dependent translation initiation in plants remains obscure. Here, we present short unstructured 4E-BP-like Arabidopsis proteins (4EBP1/4EBP2) that are non-homologous to m4E-BPs except for the eIF4E-binding motif and TOR phosphorylation sites. Unphosphorylated 4EBPs exhibit strong affinity toward eIF4Es and can inhibit formation of the cap-binding complex. Upon TOR activation, 4EBPs are phosphorylated, probably when bound directly to TOR, and likely relocated to ribosomes. 4EBPs can suppress a distinct set of mRNAs; 4EBP2 predominantly inhibits translation of core cell-cycle regulators CycB1;1 and CycD1;1, whereas 4EBP1 interferes with chlorophyll biosynthesis. Accordingly, 4EBP2 overexpression halts early seedling development, which is overcome by induction of Glc/Suc-TOR signaling. Thus, TOR regulates cap-dependent translation initiation by inactivating atypical 4EBPs in plants.
Collapse
Affiliation(s)
- Yihan Dong
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ola Srour
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nina Lukhovitskaya
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Joelle Makarian
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nicolas Baumberger
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Oxana Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - David Elser
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mikhail Schepetilnikov
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Cairo A, Vargova A, Shukla N, Capitao C, Mikulkova P, Valuchova S, Pecinkova J, Bulankova P, Riha K. Meiotic exit in Arabidopsis is driven by P-body-mediated inhibition of translation. Science 2022; 377:629-634. [PMID: 35926014 DOI: 10.1126/science.abo0904] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Meiosis, at the transition between diploid and haploid life cycle phases, is accompanied by reprograming of cell division machinery and followed by a transition back to mitosis. We show that, in Arabidopsis, this transition is driven by inhibition of translation, achieved by a mechanism that involves processing bodies (P-bodies). During the second meiotic division, the meiosis-specific protein THREE-DIVISION MUTANT 1 (TDM1) is incorporated into P-bodies through interaction with SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA 7 (SMG7). TDM1 attracts eIF4F, the main translation initiation complex, temporarily sequestering it in P-bodies and inhibiting translation. The failure of tdm1 mutants to terminate meiosis can be overcome by chemical inhibition of translation. We propose that TDM1-containing P-bodies down-regulate expression of meiotic transcripts to facilitate transition of cell fates to postmeiotic gametophyte differentiation.
Collapse
Affiliation(s)
- Albert Cairo
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Anna Vargova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Neha Shukla
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Claudio Capitao
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OAW), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Pavlina Mikulkova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Sona Valuchova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Pecinkova
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Bulankova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OAW), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Karel Riha
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Lellis AD, Patrick RM, Mayberry LK, Lorence A, Campbell ZC, Roose JL, Frankel LK, Bricker TM, Hellmann HA, Mayberry RW, Zavala AS, Choy GS, Wylie DC, Abdul-Moheeth M, Masood A, Prater AG, Van Hoorn HE, Cole NA, Browning KS. eIFiso4G Augments the Synthesis of Specific Plant Proteins Involved in Normal Chloroplast Function. PLANT PHYSIOLOGY 2019; 181:85-96. [PMID: 31308150 PMCID: PMC6716253 DOI: 10.1104/pp.19.00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/25/2019] [Indexed: 05/06/2023]
Abstract
The plant-specific translation initiation complex eIFiso4F is encoded by three genes in Arabidopsis (Arabidopsis thaliana)-genes encoding the cap binding protein eIFiso4E (eifiso4e) and two isoforms of the large subunit scaffolding protein eIFiso4G (i4g1 and i4g2). To quantitate phenotypic changes, a phenomics platform was used to grow wild-type and mutant plants (i4g1, i4g2, i4e, i4g1 x i4g2, and i4g1 x i4g2 x i4e [i4f]) under various light conditions. Mutants lacking both eIFiso4G isoforms showed the most obvious phenotypic differences from the wild type. Two-dimensional differential gel electrophoresis and mass spectrometry were used to identify changes in protein levels in plants lacking eIFiso4G. Four of the proteins identified as measurably decreased and validated by immunoblot analysis were two light harvesting complex binding proteins 1 and 3, Rubisco activase, and carbonic anhydrase. The observed decreased levels for these proteins were not the direct result of decreased transcription or protein instability. Chlorophyll fluorescence induction experiments indicated altered quinone reduction kinetics for the double and triple mutant plants with significant differences observed for absorbance, trapping, and electron transport. Transmission electron microscopy analysis of the chloroplasts in mutant plants showed impaired grana stacking and increased accumulation of starch granules consistent with some chloroplast proteins being decreased. Rescue of the i4g1 x i4g2 plant growth phenotype and increased expression of the validated proteins to wild-type levels was obtained by overexpression of eIFiso4G1. These data suggest a direct and specialized role for eIFiso4G in the synthesis of a subset of plant proteins.
Collapse
Affiliation(s)
- Andrew D Lellis
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Ryan M Patrick
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Laura K Mayberry
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, State University, Arkansas 72467
| | - Zachary C Campbell
- Arkansas Biosciences Institute, Arkansas State University, State University, Arkansas 72467
| | - Johnna L Roose
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Laurie K Frankel
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Terry M Bricker
- Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Hanjo A Hellmann
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236
| | - Roderick W Mayberry
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Ana Solis Zavala
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Grace S Choy
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Dennis C Wylie
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Mustafa Abdul-Moheeth
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Adeeb Masood
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Amy G Prater
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Hailey E Van Hoorn
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Nicola A Cole
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Karen S Browning
- Department of Molecular Biosciences and The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
5
|
dos Santos Rodrigues FH, Firczuk H, Breeze AL, Cameron AD, Walko M, Wilson AJ, Zanchin NIT, McCarthy JEG. The Leishmania PABP1-eIF4E4 interface: a novel 5'-3' interaction architecture for trans-spliced mRNAs. Nucleic Acids Res 2019; 47:1493-1504. [PMID: 30476241 PMCID: PMC6379680 DOI: 10.1093/nar/gky1187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/18/2022] Open
Abstract
Trans-splicing of trypanosomatid polycistronic transcripts produces polyadenylated monocistronic mRNAs modified to form the 5' cap4 structure (m7Gpppm36,6,2'Apm2'Apm2'Cpm23,2'U). NMR and X-ray crystallography reveal that Leishmania has a unique type of N-terminally-extended cap-binding protein (eIF4E4) that binds via a PAM2 motif to PABP1. This relies on the interactions of a combination of polar and charged amino acid side-chains together with multiple hydrophobic interactions, and underpins a novel architecture in the Leishmania cap4-binding translation factor complex. Measurements using microscale thermophoresis, fluorescence anisotropy and surface plasmon resonance characterize the key interactions driving assembly of the Leishmania translation initiation complex. We demonstrate that this complex can accommodate Leishmania eIF4G3 which, unlike the standard eukaryotic initiation complex paradigm, binds tightly to eIF4E4, but not to PABP1. Thus, in Leishmania, the chain of interactions 5'cap4-eIF4E4-PABP1-poly(A) bridges the mRNA 5' and 3' ends. Exceptionally, therefore, by binding tightly to two protein ligands and to the mRNA 5' cap4 structure, the trypanosomatid N-terminally extended form of eIF4E acts as the core molecular scaffold for the mRNA-cap-binding complex. Finally, the eIF4E4 N-terminal extension is an intrinsically disordered region that transitions to a partly folded form upon binding to PABP1, whereby this interaction is not modulated by poly(A) binding to PABP1.
Collapse
Affiliation(s)
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
- Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Alexander D Cameron
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
- School of Chemistry, University of Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
- School of Chemistry, University of Leeds, LS2 9JT, UK
| | - Nilson I T Zanchin
- Instituto Carlos Chagas, FIOCRUZ-Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba, PR 81350-010, Brazil
| | - John E G McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| |
Collapse
|
6
|
de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biol 2018; 15:739-755. [PMID: 29569995 DOI: 10.1080/15476286.2018.1445958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.
Collapse
Affiliation(s)
| | | | - Kleison C Merlo
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | - Tatiany P Romão
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Ludmila A Assis
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Camila C Xavier
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | | | - Barbara Papadopoulou
- c CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology , Laval University , Quebec , QC , Canada
| |
Collapse
|
7
|
Gallino JP, Ruibal C, Casaretto E, Fleitas AL, Bonnecarrère V, Borsani O, Vidal S. A Dehydration-Induced Eukaryotic Translation Initiation Factor iso4G Identified in a Slow Wilting Soybean Cultivar Enhances Abiotic Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:262. [PMID: 29552022 PMCID: PMC5840855 DOI: 10.3389/fpls.2018.00262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/14/2018] [Indexed: 05/31/2023]
Abstract
Water is usually the main limiting factor for soybean productivity worldwide and yet advances in genetic improvement for drought resistance in this crop are still limited. In the present study, we investigated the physiological and molecular responses to drought in two soybean contrasting genotypes, a slow wilting N7001 and a drought sensitive TJS2049 cultivars. Measurements of stomatal conductance, carbon isotope ratios and accumulated dry matter showed that N7001 responds to drought by employing mechanisms resulting in a more efficient water use than TJS2049. To provide an insight into the molecular mechanisms that these cultivars employ to deal with water stress, their early and late transcriptional responses to drought were analyzed by suppression subtractive hybridization. A number of differentially regulated genes from N7001 were identified and their expression pattern was compared between in this genotype and TJS2049. Overall, the data set indicated that N7001 responds to drought earlier than TJ2049 by up-regulating a larger number of genes, most of them encoding proteins with regulatory and signaling functions. The data supports the idea that at least some of the phenotypic differences between slow wilting and drought sensitive plants may rely on the regulation of the level and timing of expression of specific genes. One of the genes that exhibited a marked N7001-specific drought induction profile encoded a eukaryotic translation initiation factor iso4G (GmeIFiso4G-1a). GmeIFiso4G-1a is one of four members of this protein family in soybean, all of them sharing high sequence identity with each other. In silico analysis of GmeIFiso4G-1 promoter sequences suggested a possible functional specialization between distinct family members, which can attain differences at the transcriptional level. Conditional overexpression of GmeIFiso4G-1a in Arabidopsis conferred the transgenic plants increased tolerance to osmotic, salt, drought and low temperature stress, providing a strong experimental evidence for a direct association between a protein of this class and general abiotic stress tolerance mechanisms. Moreover, the results of this work reinforce the importance of the control of protein synthesis as a central mechanism of stress adaptation and opens up for new strategies for improving crop performance under stress.
Collapse
Affiliation(s)
- Juan P. Gallino
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Esteban Casaretto
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Andrea L. Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Victoria Bonnecarrère
- Unidad de Biotecnología, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Chantarachot T, Bailey-Serres J. Polysomes, Stress Granules, and Processing Bodies: A Dynamic Triumvirate Controlling Cytoplasmic mRNA Fate and Function. PLANT PHYSIOLOGY 2018; 176:254-269. [PMID: 29158329 PMCID: PMC5761823 DOI: 10.1104/pp.17.01468] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/17/2017] [Indexed: 05/05/2023]
Abstract
Discoveries illuminate highly regulated dynamics of mRNA translation, sequestration, and degradation within the cytoplasm of plants.
Collapse
Affiliation(s)
- Thanin Chantarachot
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
9
|
The helicase, DDX3X, interacts with poly(A)-binding protein 1 (PABP1) and caprin-1 at the leading edge of migrating fibroblasts and is required for efficient cell spreading. Biochem J 2017; 474:3109-3120. [PMID: 28733330 PMCID: PMC5577505 DOI: 10.1042/bcj20170354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Abstract
DDX3X, a helicase, can interact directly with mRNA and translation initiation factors, regulating the selective translation of mRNAs that contain a structured 5′ untranslated region. This activity modulates the expression of mRNAs controlling cell cycle progression and mRNAs regulating actin dynamics, contributing to cell adhesion and motility. Previously, we have shown that ribosomes and translation initiation factors localise to the leading edge of migrating fibroblasts in loci enriched with actively translating ribosomes, thereby promoting steady-state levels of ArpC2 and Rac1 proteins at the leading edge of cells during spreading. As DDX3X can regulate Rac1 levels, cell motility and metastasis, we have examined DDX3X protein interactions and localisation using many complementary approaches. We now show that DDX3X can physically interact and co-localise with poly(A)-binding protein 1 and caprin-1 at the leading edge of spreading cells. Furthermore, as depletion of DDX3X leads to decreased cell motility, this provides a functional link between DDX3X, caprin-1 and initiation factors at the leading edge of migrating cells to promote cell migration and spreading.
Collapse
|
10
|
Xu G, Greene GH, Yoo H, Liu L, Marqués J, Motley J, Dong X. Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature 2017; 545:487-490. [PMID: 28514447 PMCID: PMC5485861 DOI: 10.1038/nature22371] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/19/2017] [Indexed: 12/22/2022]
Abstract
In the absence of specialized immune cells, the need for plants to reprogram transcription to transition from growth-related activities to defence is well understood1, 2. However, little is known about translational changes that occur during immune induction. Using ribosome footprinting (RF), we performed global translatome profiling on Arabidopsis exposed to the microbe-associated molecular pattern (MAMP) elf18. We found that during this pattern-triggered immunity (PTI), translation was tightly regulated and poorly correlated with transcription. Identification of genes with altered translational efficiency (TE) led to the discovery of novel regulators of this immune response. Further investigation of these genes showed that mRNA sequence features are major determinants of the observed TE changes. In the 5′ leader sequences of transcripts with increased TE, we found a highly enriched mRNA consensus sequence, R-motif, consisting of mostly purines. We showed that R-motif regulates translation in response to PTI induction through interaction with poly(A)-binding proteins. Therefore, this study provides not only strong evidence, but also a molecular mechanism for global translational reprogramming during PTI in plants.
Collapse
Affiliation(s)
- Guoyong Xu
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - George H Greene
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Heejin Yoo
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Lijing Liu
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Jorge Marqués
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Jonathan Motley
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
11
|
Merchante C, Stepanova AN, Alonso JM. Translation regulation in plants: an interesting past, an exciting present and a promising future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:628-653. [PMID: 28244193 DOI: 10.1111/tpj.13520] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 05/19/2023]
Abstract
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biologia Molecular y Bioquimica, Universidad de Malaga-Instituto de Hortofruticultura Subtropical y Mediterranea, IHSM-UMA-CSIC, Malaga, Andalucía, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
12
|
Gallie DR. Class II members of the poly(A) binding protein family exhibit distinct functions during Arabidopsis growth and development. ACTA ACUST UNITED AC 2017; 5:e1295129. [PMID: 28702277 DOI: 10.1080/21690731.2017.1295129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
The poly(A)-binding protein (PABP) binds to the poly(A) tail of eukaryotic cellular mRNAs and contributes to their stability and translational efficiency. In plants, PABP is expressed from an unusually large gene family grouped into 3 classes that expanded during the evolution of land plants. Subsequent to expansion of the family, members diverged in their primary sequence and in expression. Further expansion of the family and divergence of its members in the Brassicaceae demonstrate the continued dynamic evolution of PABP in plants. In this study, the function of the widely-expressed class II PABP family members was examined to determine how individual class II members contribute to plant growth and development. Of the 3 class II PABP members, PAB2 and PAB4 contribute most to vegetative growth and vegetative-to-floral transition whereas PAB2, and the recently-evolved third class II member, PAB8, contribute to inflorescence and silique growth. Interestingly, although class I and class III PABP members are expressed specifically in reproductive organs, class II PABP members are also necessary for fertility in that the combinatorial loss of PAB2 and either PAB4 or PAB8 expression resulted in reduced fertility. Although all 3 class II members are required for protein expression, PAB4 contributes most to the steady-state level of a reporter mRNA and to protein expression. These findings suggest that class II PABP members are partially overlapping in function but also involved in distinct aspects of plant growth and development.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA, USA
| |
Collapse
|
13
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|