1
|
Silaidos CV, Reutzel M, Wachter L, Dieter F, Ludin N, Blum WF, Wudy SA, Matura S, Pilatus U, Hattingen E, Pantel J, Eckert GP. Age-related changes in energy metabolism in peripheral mononuclear blood cells (PBMCs) and the brains of cognitively healthy seniors. GeroScience 2024; 46:981-998. [PMID: 37308768 PMCID: PMC10828287 DOI: 10.1007/s11357-023-00810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence and many age-related neurodegenerative diseases. We therefore investigated the relationship between mitochondrial function in peripheral blood cells and cerebral energy metabolites in young and older sex-matched, physically and mentally healthy volunteers. Cross-sectional observational study involving 65 young (26.0 ± 0.49 years) and 65 older (71.7 ± 0.71 years) women and men recruited. Cognitive health was evaluated using established psychometric methods (MMSE, CERAD). Blood samples were collected and analyzed, and fresh peripheral blood mononuclear cells (PBMCs) were isolated. Mitochondrial respiratory complex activity was measured using a Clarke electrode. Adenosine triphosphate (ATP) and citrate synthase activity (CS) were determined by bioluminescence and photometrically. N-aspartyl-aspartate (tNAA), ATP, creatine (Cr), and phosphocreatine (PCr) were quantified in brains using 1H- and 31P-magnetic resonance spectroscopic imaging (MRSI). Levels of insulin-like growth factor 1 (IGF-1) were determined using a radio-immune assay (RIA). Complex IV activity (CIV) (- 15%) and ATP levels (- 11%) were reduced in PBMCs isolated from older participants. Serum levels of IGF-1 were significantly reduced (- 34%) in older participants. Genes involved in mitochondrial activity, antioxidant mechanisms, and autophagy were unaffected by age. tNAA levels were reduced (- 5%), Cr (+ 11%), and PCr (+ 14%) levels were increased, and ATP levels were unchanged in the brains of older participants. Markers of energy metabolism in blood cells did not significantly correlate with energy metabolites in the brain. Age-related bioenergetic changes were detected in peripheral blood cells and the brains of healthy older people. However, mitochondrial function in peripheral blood cells does not reflect energy related metabolites in the brain. While ATP levels in PBMCs may be be a valid marker for age-related mitochondrial dysfunction in humans, cerebral ATP remained constant.
Collapse
Affiliation(s)
- Carmina V Silaidos
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Martina Reutzel
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Lena Wachter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Fabian Dieter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Nasir Ludin
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Werner F Blum
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Ulrich Pilatus
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
- Brain Imaging Center (BIC), University Hospital Frankfurt, Frankfurt a. M, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Johannes Pantel
- Geriatric Medicine, Institute of General Practice, Goethe University, Frankfurt a. M, Germany
| | - Gunter P Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Zheng P, Ma W, Gu Y, Wu H, Bian Z, Liu N, Yang D, Chen X. High-fat diet causes mitochondrial damage and downregulation of mitofusin-2 and optic atrophy-1 in multiple organs. J Clin Biochem Nutr 2023; 73:61-76. [PMID: 37534099 PMCID: PMC10390808 DOI: 10.3164/jcbn.22-73] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/19/2023] [Indexed: 08/04/2023] Open
Abstract
High-fat consumption promotes the development of obesity, which is associated with various chronic illnesses. Mitochondria are the energy factories of eukaryotic cells, maintaining self-stability through a fine-tuned quality-control network. In the present study, we evaluated high-fat diet (HFD)-induced changes in mitochondrial ultrastructure and dynamics protein expression in multiple organs. C57BL/6J male mice were fed HFD or normal diet (ND) for 24 weeks. Compared with ND-fed mice, HFD-fed mice exhibited increased body weight, cardiomyocyte enlargement, pulmonary fibrosis, hepatic steatosis, renal and splenic structural abnormalities. The cellular apoptosis of the heart, liver, and kidney increased. Cellular lipid droplet deposition and mitochondrial deformations were observed. The proteins related to mitochondrial biogenesis (TFAM), fission (DRP1), autophagy (LC3 and LC3-II: LC3-I ratio), and mitophagy (PINK1) presented different changes in different organs. The mitochondrial fusion regulators mitofusin-2 (MFN2) and optic atrophy-1 (OPA1) were consistently downregulated in multiple organs, even the spleen. TOMM20 and ATP5A protein were enhanced in the heart, skeletal muscle, and spleen, and attenuated in the kidney. These results indicated that high-fat feeding caused pathological changes in multiple organs, accompanied by mitochondrial ultrastructural damage, and MFN2 and OPA1 downregulation. The mitochondrial fusion proteins may become promising targets and/or markers for treating metabolic disease.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Wenjing Ma
- Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Yilu Gu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Hengfang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Zhiping Bian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Nannan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
- Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Xiangjian Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
4
|
Li L, Chen Q, Yu Y, Chen H, Lu M, Huang Y, Li P, Chang H. RKI‐1447 suppresses colorectal carcinoma cell growth via disrupting cellular bioenergetics and mitochondrial dynamics. J Cell Physiol 2019; 235:254-266. [PMID: 31237697 DOI: 10.1002/jcp.28965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Liyi Li
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
- General Surgery Department Second Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Qin Chen
- Department of Intensive Care First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yaojun Yu
- General Surgery Department Second Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui Chen
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Mingdong Lu
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Yingpeng Huang
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Pihong Li
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Hong Chang
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| |
Collapse
|
5
|
de Las Heras N, Klett-Mingo M, Ballesteros S, Martín-Fernández B, Escribano Ó, Blanco-Rivero J, Balfagón G, Hribal ML, Benito M, Lahera V, Gómez-Hernández A. Chronic Exercise Improves Mitochondrial Function and Insulin Sensitivity in Brown Adipose Tissue. Front Physiol 2018; 9:1122. [PMID: 30174613 PMCID: PMC6107710 DOI: 10.3389/fphys.2018.01122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present work was to study the consequences of chronic exercise training on factors involved in the regulation of mitochondrial remodeling and biogenesis, as well as the ability to produce energy and improve insulin sensitivity and glucose uptake in rat brown adipose tissue (BAT). Male Wistar rats were divided into two groups: (1) control group (C; n = 10) and (2) exercise-trained rats (ET; n = 10) for 8 weeks on a motor treadmill (five times per week for 50 min). Exercise training reduced body weight, plasma insulin, and oxidized LDL concentrations. Protein expression of ATP-independent metalloprotease (OMA1), short optic atrophy 1 (S-OPA1), and dynamin-related protein 1 (DRP1) in BAT increased in trained rats, and long optic atrophy 1 (L-OPA1) and mitofusin 1 (MFN1) expression decreased. BAT expression of nuclear respiratory factor type 1 (NRF1) and mitochondrial transcription factor A (TFAM), the main factors involved in mitochondrial biogenesis, was higher in trained rats compared to controls. Exercise training increased protein expression of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and AMP-activated protein kinase (pAMPK/AMPK ratio) in BAT. In addition, training increased carnitine palmitoyltransferase II (CPT II), mitochondrial F1 ATP synthase α-chain, mitochondrial malate dehydrogenase 2 (mMDH) and uncoupling protein (UCP) 1,2,3 expression in BAT. Moreover, exercise increased insulin receptor (IR) ratio (IRA/IRB ratio), IRA-insulin-like growth factor 1 receptor (IGF-1R) hybrids and p42/44 activation, and decreased IGF-1R expression and IR substrate 1 (p-IRS-1) (S307) indicating higher insulin sensitivity and favoring glucose uptake in BAT in response to chronic exercise training. In summary, the present study indicates that chronic exercise is able to improve the energetic profile of BAT in terms of increased mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- Natalia de Las Heras
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mercedes Klett-Mingo
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Óscar Escribano
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Gloria Balfagón
- Department of Physiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Marta L Hribal
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| | - Vicente Lahera
- Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Barcelona, Spain
| |
Collapse
|
6
|
Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest 2017; 127:405-414. [PMID: 28145905 DOI: 10.1172/jci87440] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic age-related lung disease with high mortality that is characterized by abnormal scarring of the lung parenchyma. There has been a recent attempt to define the age-associated changes predisposing individuals to develop IPF. Age-related perturbations that are increasingly found in epithelial cells and fibroblasts from IPF lungs compared with age-matched cells from normal lungs include defective autophagy, telomere attrition, altered proteostasis, and cell senescence. These divergent processes seem to converge in mitochondrial dysfunction and metabolic distress, which potentiate maladaptation to stress and susceptibility to age-related diseases such as IPF. Therapeutic approaches that target aging processes may be beneficial for halting the progression of disease and improving quality of life in IPF patients.
Collapse
|
7
|
Abstract
Recent advances in mitochondrial biology have revealed the high diversity and complexity of proteolytic enzymes that regulate mitochondrial function. We have classified mitochondrial proteases, or mitoproteases, on the basis of their function and location, and defined the human mitochondrial degradome as the complete set of mitoproteases that are encoded by the human genome. In addition to their nonspecific degradative functions, mitoproteases perform highly regulated proteolytic reactions that are important in mitochondrial function, integrity and homeostasis. These include protein synthesis, quality control, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Impaired or dysregulated function of mitoproteases is associated with ageing and with many pathological conditions such as neurodegenerative disorders, metabolic syndromes and cancer. A better understanding of the mitochondrial proteolytic landscape and its modulation may contribute to improving human lifespan and 'healthspan'.
Collapse
|