1
|
Sokouti B. The identification of biomarkers for Alzheimer's disease using a systems biology approach based on lncRNA-circRNA-miRNA-mRNA ceRNA networks. Comput Biol Med 2024; 179:108860. [PMID: 38996555 DOI: 10.1016/j.compbiomed.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
In addition to being the most prevalent form of neurodegeneration among the elderly, AD is a devastating multifactorial disease. Currently, treatments address only its symptoms. Several clinical studies have shown that the disease begins to manifest decades before the first symptoms appear, indicating that studying early changes is crucial to improving early diagnosis and discovering novel treatments. Our study used bioinformatics and systems biology to identify biomarkers in AD that could be used for diagnosis and prognosis. The procedure was performed on data from the GEO database, and GO and KEGG enrichment analysis were performed. Then, we set up a network of interactions between proteins. Several miRNA prediction tools including miRDB, miRWalk, and TargetScan were used. The ceRNA network led to the identification of eight mRNAs, four circRNAs, seven miRNAs, and seven lncRNAs. Multiple mechanisms, including the cell cycle and DNA replication, have been linked to the promotion of AD development by the ceRNA network. By using the ceRNA network, it should be possible to extract prospective biomarkers and therapeutic targets for the treatment of AD. It is possible that the processes involved in DNA cell cycle and the replication of DNA contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Hao Z, Yang Y, Xu D, Feng H, Li K, Ji C, Li M, Zhang H. Over-expression of hsa_circ_0088214 suppresses tumor progression by inhibiting Akt signaling pathway in osteosarcoma. J Orthop Surg Res 2023; 18:385. [PMID: 37237370 DOI: 10.1186/s13018-023-03873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND To explore the effect of has_circ_0088214 in osteosarcoma cells and corresponding mechanisms. METHODS Osteosarcoma cell line MG63 and U2OS were selected in this study. Wound-healing and matrigel transwell assays were performed to detect migration and invasion capacities. CCK-8 assay was used to measure cell growth and cisplatin resistance. Cell apoptosis was observed by Hoechst 33342 staining after H2O2 induce. Western Blot was used to detect protein expression level. The rescue experiments were also performed using an Akt activator SC79. RESULTS Hsa_circ_0088214 was down-regulated in osteosarcoma cells compared to normal osteoblast cells. Over-expression of has_circ_0088214 significantly reduced osteosarcoma cells invasion, migration and resistance to cisplatin, but the apoptotic ratio was increased. The phosphorylation level of Akt could be regulated by hsa_circ_0088214, and rescue experiments proved Akt signaling pathway took part in above biological processes. CONCLUSION Up-regulation of hsa_circ_0088214 suppresses invasion, migration, cisplatin resistance but promoting apoptosis induced by H2O2 by inhibiting Akt signaling pathway in osteosarcoma.
Collapse
Affiliation(s)
- Zhiwei Hao
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Yiqun Yang
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Daxia Xu
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Hongyong Feng
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Kunpeng Li
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Changbin Ji
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Man Li
- Department of Cardiology, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China
| | - Honglei Zhang
- Department of Orthopaedics, Liaocheng People's Hospital, No 67 Dongchang West Road, Liaocheng City, 252000, Shandong Province, People's Republic of China.
| |
Collapse
|
3
|
Zhang Q, Chen B, Yang P, Wu J, Pang X, Pang C. Bioinformatics-based study reveals that AP2M1 is regulated by the circRNA-miRNA-mRNA interaction network and affects Alzheimer's disease. Front Genet 2022; 13:1049786. [PMID: 36468008 PMCID: PMC9716081 DOI: 10.3389/fgene.2022.1049786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 09/30/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disease that worsens with time. The hallmark illnesses include extracellular senile plaques caused by β-amyloid protein deposition, neurofibrillary tangles caused by tau protein hyperphosphorylation, and neuronal loss accompanying glial cell hyperplasia. Noncoding RNAs are substantially implicated in related pathophysiology, according to mounting data. However, the function of these ncRNAs is mainly unclear. Circular RNAs (circRNAs) include many miRNA-binding sites (miRNA response elements, MREs), which operate as miRNA sponges or competing endogenous RNAs (ceRNAs). The purpose of this study was to look at the role of circular RNAs (circRNAs) and microRNAs (miRNAs) in Alzheimer's disease (AD) as possible biomarkers. The Gene Expression Omnibus (GEO) database was used to obtain an expression profile of Alzheimer's disease patients (GSE5281, GSE122603, GSE97760, GSE150693, GSE1297, and GSE161435). Through preliminary data deletion, 163 genes with significant differences, 156 miRNAs with significant differences, and 153 circRNAs with significant differences were identified. Then, 10 key genes, led by MAPT and AP2M1, were identified by the mediation center algorithm, 34 miRNAs with obvious prognosis were identified by the cox regression model, and 16 key circRNAs were selected by the database. To develop competitive endogenous RNA (ceRNA) networks, hub circRNAs and mRNAs were used. Finally, GO analysis and clinical data verification of key genes were carried out. We discovered that a down-regulated circRNA (has_circ_002048) caused the increased expression of numerous miRNAs, which further inhibited the expression of a critical mRNA (AP2M1), leading to Alzheimer's disease pathology. The findings of this work contribute to a better understanding of the circRNA-miRNA-mRNA regulating processes in Alzheimer's disease. Furthermore, the ncRNAs found here might become novel biomarkers and potential targets for the development of Alzheimer's drugs.
Collapse
Affiliation(s)
- Qi Zhang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Bishuang Chen
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Ping Yang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Jipan Wu
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Chaoyang Pang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
4
|
Projective mechanisms subtending real world phenomena wipe away cause effect relationships. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:1-13. [PMID: 31838044 DOI: 10.1016/j.pbiomolbio.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/16/2019] [Accepted: 12/10/2019] [Indexed: 01/11/2023]
Abstract
Causal relationships lie at the very core of scientific description of biophysical phenomena. Nevertheless, observable facts involving changes in system shape, dimension and symmetry may elude simple cause and effect inductive explanations. Here we argue that numerous physical and biological phenomena such as chaotic dynamics, symmetry breaking, long-range collisionless neural interactions, zero-valued energy singularities, and particle/wave duality can be accounted for in terms of purely topological mechanisms devoid of causality. We illustrate how simple topological claims, seemingly far away from scientific inquiry (e.g., "given at least some wind on Earth, there must at all times be a cyclone or anticyclone somewhere"; "if one stirs to dissolve a lump of sugar in a cup of coffee, it appears there is always a point without motion"; "at any moment, there is always a pair of antipodal points on the Earth's surface with equal temperatures and barometric pressures") reflect the action of non-causal topological rules. To do so, we introduce some fundamental topological tools and illustrate how phenomena such as double slit experiments, cellular mechanisms and some aspects of brain function can be explained in terms of geometric projections and mappings, rather than local physical effects. We conclude that unavoidable, passive, spontaneous topological modifications may lead to novel functional biophysical features, independent of exerted physical forces, thermodynamic constraints, temporal correlations and probabilistic a priori knowledge of previous cases.
Collapse
|
5
|
Pervouchine DD. Circular exonic RNAs: When RNA structure meets topology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194384. [PMID: 31102674 DOI: 10.1016/j.bbagrm.2019.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Although RNA circularization was first documented in the 1990s, the extent to which it occurs was not known until recent advances in high-throughput sequencing enabled the widespread identification of circular RNAs (circRNAs). Despite this, many aspects of circRNA biogenesis, structure, and function yet remain obscure. This review focuses on circular exonic RNAs, a subclass of circRNAs that are generated through backsplicing. Here, I hypothesize that RNA secondary structure can be the common factor that promotes both exon skipping and spliceosomal RNA circularization, and that backsplicing of double-stranded regions could generate topologically linked circRNA molecules. CircRNAs manifest themselves by the presence of tail-to-head exon junctions, which were previously attributed to post-transcriptional exon permutation and repetition. I revisit these observations and argue that backsplicing does not automatically imply RNA circularization because tail-to-head exon junctions give only local information about transcript architecture and, therefore, they are in principle insufficient to determine globally circular topology. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Dmitri D Pervouchine
- Skolkovo Institute of Science and Technology, 3 Nobel St, Moscow 143026, Russia; Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow 119234, Russia.
| |
Collapse
|
6
|
Synthesizing topological structures containing RNA. Nat Commun 2017; 8:14936. [PMID: 28361879 PMCID: PMC5381007 DOI: 10.1038/ncomms14936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
Though knotting and entanglement have been observed in DNA and proteins, their existence in RNA remains an enigma. Synthetic RNA topological structures are significant for understanding the physical and biological properties pertaining to RNA topology, and these properties in turn could facilitate identifying naturally occurring topologically nontrivial RNA molecules. Here we show that topological structures containing single-stranded RNA (ssRNA) free of strong base pairing interactions can be created either by configuring RNA-DNA hybrid four-way junctions or by template-directed synthesis with a single-stranded DNA (ssDNA) topological structure. By using a constructed ssRNA knot as a highly sensitive topological probe, we find that Escherichia coli DNA topoisomerase I has low RNA topoisomerase activity and that the R173A point mutation abolishes the unknotting activity for ssRNA, but not for ssDNA. Furthermore, we discover the topological inhibition of reverse transcription (RT) and obtain different RT-PCR patterns for an ssRNA knot and circle of the same sequence.
Collapse
|
7
|
Abstract
Physical entanglement, and particularly knots arise spontaneously in equilibrated polymers that are sufficiently long and densely packed. Biopolymers are no exceptions: knots have long been known to occur in proteins as well as in encapsidated viral DNA. The rapidly growing number of RNA structures has recently made it possible to investigate the incidence of physical knots in this type of biomolecule, too. Strikingly, no knots have been found to date in the known RNA structures. In this Point of View Article we discuss the absence of knots in currently available RNAs and consider the reasons why knots in RNA have not yet been found, despite the expectation that they should exist in Nature. We conclude by singling out a number of RNA sequences that, based on the properties of their predicted secondary structures, are good candidates for knotted RNAs.
Collapse
Affiliation(s)
| | | | - Niles Lehman
- c Department of Chemistry , Portland State University , Portland OR , 97207 USA
| | - Henri Orland
- d Institut de Physique Théorique, Commissariat à l'énergie atomique CEA, IPhT CNRS, UMR3681 , F-91191 Gif-sur-Yvette France.,e Beijing Computational Science Research Center , Haidian District Beijing , 100084 , China
| | | |
Collapse
|
8
|
Abstract
The ongoing effort to detect and characterize physical entanglement in biopolymers has so far established that knots are present in many globular proteins and also, abound in viral DNA packaged inside bacteriophages. RNA molecules, however, have not yet been systematically screened for the occurrence of physical knots. We have accordingly undertaken the systematic profiling of the several thousand RNA structures present in the Protein Data Bank (PDB). The search identified no more than three deeply knotted RNA molecules. These entries are rRNAs of about 3,000 nt solved by cryo-EM. Their genuine knotted state is, however, doubtful based on the detailed structural comparison with homologs of higher resolution, which are all unknotted. Compared with the case of proteins and viral DNA, the observed incidence of knots in available RNA structures is, therefore, practically negligible. This fact suggests that either evolutionary selection or thermodynamic and kinetic folding mechanisms act toward minimizing the entanglement of RNA to an extent that is unparalleled by other types of biomolecules. A possible general strategy for designing synthetic RNA sequences capable of self-tying in a twist-knot fold is finally proposed.
Collapse
|
9
|
Riedmann EM. Landes Highlights. RNA Biol 2013. [DOI: 10.4161/rna.26373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|