1
|
Skurnik M, Jaakkola S, Mattinen L, von Ossowski L, Nawaz A, Pajunen MI, Happonen LJ. Bacteriophages fEV-1 and fD1 Infect Yersinia pestis. Viruses 2021; 13:1384. [PMID: 34372590 PMCID: PMC8309999 DOI: 10.3390/v13071384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages vB_YpeM_fEV-1 (fEV-1) and vB_YpeM_fD1 (fD1) were isolated from incoming sewage water samples in Turku, Finland, using Yersinia pestis strains EV76 and KIM D27 as enrichment hosts, respectively. Genomic analysis and transmission electron microscopy established that fEV-1 is a novel type of dwarf myovirus, while fD1 is a T4-like myovirus. The genome sizes are 38 and 167 kb, respectively. To date, the morphology and genome sequences of some dwarf myoviruses have been described; however, a proteome characterization such as the one presented here, has currently been lacking for this group of viruses. Notably, fEV-1 is the first dwarf myovirus described for Y. pestis. The host range of fEV-1 was restricted strictly to Y. pestis strains, while that of fD1 also included other members of Enterobacterales such as Escherichia coli and Yersinia pseudotuberculosis. In this study, we present the life cycles, genomes, and proteomes of two Yersinia myoviruses, fEV-1 and fD1.
Collapse
Affiliation(s)
- Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Salla Jaakkola
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Laura Mattinen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Lotta von Ossowski
- Department of Medical Biochemistry, University of Turku, 20520 Turku, Finland;
| | - Ayesha Nawaz
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Lotta J. Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, 22184 Lund, Sweden;
| |
Collapse
|
2
|
Cavallo FM, Jordana L, Friedrich AW, Glasner C, van Dijl JM. Bdellovibrio bacteriovorus: a potential 'living antibiotic' to control bacterial pathogens. Crit Rev Microbiol 2021; 47:630-646. [PMID: 33934682 DOI: 10.1080/1040841x.2021.1908956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bdellovibrio bacteriovorus is a small Deltaproteobacterium which, since its discovery, has distinguished itself for the unique ability to prey on other Gram-negative bacteria. The studies on this particular "predatory bacterium", have gained momentum in response to the rising problem of antibiotic resistance, because it could be applied as a potential probiotic and antibiotic agent. Hereby, we present recent advances in the study of B. bacteriovorus, comprehending fundamental aspects of its biology, obligatory intracellular life cycle, predation resistance, and potential applications. Furthermore, we discuss studies that pave the road towards the use of B. bacteriovorus as a "living antibiotic" in human therapy, focussing on its interaction with biofilms, the host immune response, predation susceptibility and in vivo application models. The available data imply that it will be possible to upgrade this predator bacterium from a predominantly academic interest to an instrument that could confront antibiotic resistant infections.
Collapse
Affiliation(s)
- Francis M Cavallo
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lorea Jordana
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Correlation of Host Range Expansion of Therapeutic Bacteriophage Sb-1 with Allele State at a Hypervariable Repeat Locus. Appl Environ Microbiol 2019; 85:AEM.01209-19. [PMID: 31492663 DOI: 10.1128/aem.01209-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococci are frequent agents of health care-associated infections and include methicillin-resistant Staphylococcus aureus (MRSA), which is resistant to first-line antibiotic treatments. Bacteriophage (phage) therapy is a promising alternative antibacterial option to treat MRSA infections. S. aureus-specific phage Sb-1 has been widely used in Georgia to treat a variety of human S. aureus infections. Sb-1 has a broad host range within S. aureus, including MRSA strains, and its host range can be further expanded by adaptation to previously resistant clinical isolates. The susceptibilities of a panel of 25 genetically diverse clinical MRSA isolates to Sb-1 phage were tested, and the phage had lytic activity against 23 strains (92%). The adapted phage stock (designated Sb-1A) was tested in comparison with the parental phage (designated Sb-1P). Sb-1P had lytic activity against 78/90 strains (87%) in an expanded panel of diverse global S. aureus isolates, while eight additional strains in this panel were susceptible to Sb-1A (lytic against 86/90 strains [96%]). The Sb-1A stock was shown to be a mixed population of phage clones, including approximately 4% expanded host range mutants, designated Sb-1M. In an effort to better understand the genetic basis for this host range expansion, we sequenced the complete genomes of the parental Sb-1P and two Sb-1M mutants. Comparative genomic analysis revealed a hypervariable complex repeat structure in the Sb-1 genome that had a distinct allele that correlated with the host range expansion. This hypervariable region was previously uncharacterized in Twort-like phages and represents a novel putative host range determinant.IMPORTANCE Because of limited therapeutic options, infections caused by methicillin-resistant Staphylococcus aureus represent a serious problem in both civilian and military health care settings. Phages have potential as alternative antibacterial agents that can be used in combination with antibiotic drugs. For decades, phage Sb-1 has been used in former Soviet Union countries for antistaphylococcal treatment in humans. The therapeutic spectrum of activity of Sb-1 can be increased by selecting mutants of the phage with expanded host ranges. In this work, the host range of phage Sb-1 was expanded in the laboratory, and a hypervariable region in its genome was identified with a distinct allele state that correlated with this host range expansion. These results provide a genetic basis for better understanding the mechanisms of phage host range expansion.
Collapse
|
4
|
Zhao J, Zhang Z, Tian C, Chen X, Hu L, Wei X, Li H, Lin W, Jiang A, Feng R, Yuan J, Yin Z, Zhao X. Characterizing the Biology of Lytic Bacteriophage vB_EaeM_φEap-3 Infecting Multidrug-Resistant Enterobacter aerogenes. Front Microbiol 2019; 10:420. [PMID: 30891025 PMCID: PMC6412083 DOI: 10.3389/fmicb.2019.00420] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Carbapenem-resistant Enterobacter aerogenes strains are a major clinical problem because of the lack of effective alternative antibiotics. However, viruses that lyze bacteria, called bacteriophages, have potential therapeutic applications in the control of antibiotic-resistant bacteria. In the present study, a lytic bacteriophage specific for E. aerogenes isolates, designated vB_EaeM_φEap-3, was characterized. Based on transmission electron microscopy analysis, phage vB_EaeM_φEap-3 was classified as a member of the family Myoviridae (order, Caudovirales). Host range determination revealed that vB_EaeM_φEap-3 lyzed 18 of the 28 E. aerogenes strains tested, while a one-step growth curve showed a short latent period and a moderate burst size. The stability of vB_EaeM_φEap-3 at various temperatures and pH levels was also examined. Genomic sequencing and bioinformatics analysis revealed that vB_EaeM_φEap-3 has a 175,814-bp double-stranded DNA genome that does not contain any genes considered undesirable for the development of therapeutics (e.g., antibiotic resistance genes, toxin-encoding genes, integrase). The phage genome contained 278 putative protein-coding genes and one tRNA gene, tRNA-Met (AUG). Phylogenetic analysis based on large terminase subunit and major capsid protein sequences suggested that vB_EaeM_φEap-3 belongs to novel genus “Kp15 virus” within the T4-like virus subfamily. Based on host range, genomic, and physiological parameters, we propose that phage vB_EaeM_φEap-3 is a suitable candidate for phage therapy applications.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zheng Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Changyu Tian
- Institute of Disease Control and Prevention, Chinese People's Liberation Army (PLA), Beijing, China
| | - Xiao Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao Wei
- Institute of Disease Control and Prevention, Chinese People's Liberation Army (PLA), Beijing, China
| | - Huan Li
- Institute of Disease Control and Prevention, Chinese People's Liberation Army (PLA), Beijing, China
| | - Weishi Lin
- Institute of Disease Control and Prevention, Chinese People's Liberation Army (PLA), Beijing, China
| | - Aimin Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Chinese People's Liberation Army (PLA), Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention, Chinese People's Liberation Army (PLA), Beijing, China
| |
Collapse
|
5
|
Characterization of vB_Kpn_F48, a Newly Discovered Lytic Bacteriophage for Klebsiella pneumoniae of Sequence Type 101. Viruses 2018; 10:v10090482. [PMID: 30205588 PMCID: PMC6163469 DOI: 10.3390/v10090482] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Resistance to carbapenems in Enterobacteriaceae, including Klebsiella pneumoniae, represents a major clinical problem given the lack of effective alternative antibiotics. Bacteriophages could provide a valuable tool to control the dissemination of antibiotic resistant isolates, for the decolonization of colonized individuals and for treatment purposes. In this work, we have characterized a lytic bacteriophage, named vB_Kpn_F48, specific for K. pneumoniae isolates belonging to clonal group 101. Phage vB_Kpn_F48 was classified as a member of Myoviridae, order Caudovirales, on the basis of transmission electron microscopy analysis. Physiological characterization demonstrated that vB_Kpn_F48 showed a narrow host range, a short latent period, a low burst size and it is highly stable to both temperature and pH variations. High throughput sequencing and bioinformatics analysis revealed that the phage is characterized by a 171 Kb dsDNA genome that lacks genes undesirable for a therapeutic perspective such integrases, antibiotic resistance genes and toxin encoding genes. Phylogenetic analysis suggests that vB_Kpn_F48 is a T4-like bacteriophage which belongs to a novel genus within the Tevenvirinae subfamily, which we tentatively named "F48virus". Considering the narrow host range, the genomic features and overall physiological parameters phage vB_Kpn_F48 could be a promising candidate to be used alone or in cocktails for phage therapy applications.
Collapse
|
6
|
Zhang G, Zhao Y, Paramasivan S, Richter K, Morales S, Wormald PJ, Vreugde S. Bacteriophage effectively kills multidrug resistantStaphylococcus aureusclinical isolates from chronic rhinosinusitis patients. Int Forum Allergy Rhinol 2017; 8:406-414. [DOI: 10.1002/alr.22046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/25/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Guimin Zhang
- Department of Otolaryngology-Head & Neck Surgery; Adelaide University; Adelaide SA Australia
- Department of Otolaryngology-Head and Neck Surgery; Tianjin First Center Hospital; Tianjin China
| | - Yin Zhao
- Department of Otolaryngology-Head & Neck Surgery; Adelaide University; Adelaide SA Australia
- Department of Otolaryngology; Head and Neck Surgery; The Second Hospital of Jilin University; Changchun China
| | - Sathish Paramasivan
- Department of Otolaryngology-Head & Neck Surgery; Adelaide University; Adelaide SA Australia
| | - Katharina Richter
- Department of Otolaryngology-Head & Neck Surgery; Adelaide University; Adelaide SA Australia
| | | | - Peter-John Wormald
- Department of Otolaryngology-Head & Neck Surgery; Adelaide University; Adelaide SA Australia
| | - Sarah Vreugde
- Department of Otolaryngology-Head & Neck Surgery; Adelaide University; Adelaide SA Australia
| |
Collapse
|
7
|
Oliveira H, Pinto G, Oliveira A, Noben JP, Hendrix H, Lavigne R, Łobocka M, Kropinski AM, Azeredo J. Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies. Sci Rep 2017; 7:46157. [PMID: 28387353 PMCID: PMC5384007 DOI: 10.1038/srep46157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1's dsDNA genome consists of 163,095 bp and encodes 271 proteins, exhibiting low DNA (<40%) and protein (<70%) homology to other members of the Tevenvirinae. Its unique property is a >10 kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394 bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27 M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Diepenbeek 3590, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | - Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrew M Kropinski
- Departments of Food Science; Molecular and Cellular Biology; and, Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:71-97. [PMID: 25381655 DOI: 10.1007/s11120-014-0057-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.
Collapse
Affiliation(s)
- Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andrew D Millard
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
9
|
Hertel R, Rodríguez DP, Hollensteiner J, Dietrich S, Leimbach A, Hoppert M, Liesegang H, Volland S. Genome-based identification of active prophage regions by next generation sequencing in Bacillus licheniformis DSM13. PLoS One 2015; 10:e0120759. [PMID: 25811873 PMCID: PMC4374763 DOI: 10.1371/journal.pone.0120759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Prophages are viruses, which have integrated their genomes into the genome of a bacterial host. The status of the prophage genome can vary from fully intact with the potential to form infective particles to a remnant state where only a few phage genes persist. Prophages have impact on the properties of their host and are therefore of great interest for genomic research and strain design. Here we present a genome- and next generation sequencing (NGS)-based approach for identification and activity evaluation of prophage regions. Seven prophage or prophage-like regions were identified in the genome of Bacillus licheniformis DSM13. Six of these regions show similarity to members of the Siphoviridae phage family. The remaining region encodes the B. licheniformis orthologue of the PBSX prophage from Bacillus subtilis. Analysis of isolated phage particles (induced by mitomycin C) from the wild-type strain and prophage deletion mutant strains revealed activity of the prophage regions BLi_Pp2 (PBSX-like), BLi_Pp3 and BLi_Pp6. In contrast to BLi_Pp2 and BLi_Pp3, neither phage DNA nor phage particles of BLi_Pp6 could be visualized. However, the ability of prophage BLi_Pp6 to generate particles could be confirmed by sequencing of particle-protected DNA mapping to prophage locus BLi_Pp6. The introduced NGS-based approach allows the investigation of prophage regions and their ability to form particles. Our results show that this approach increases the sensitivity of prophage activity analysis and can complement more conventional approaches such as transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Robert Hertel
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - David Pintor Rodríguez
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Jacqueline Hollensteiner
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Sascha Dietrich
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Andreas Leimbach
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Michael Hoppert
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Heiko Liesegang
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| | - Sonja Volland
- Georg-August University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, Göttingen, Germany
| |
Collapse
|
10
|
Efficient purification and concentration of viruses from a large body of high turbidity seawater. MethodsX 2014; 1:197-206. [PMID: 26150953 PMCID: PMC4473021 DOI: 10.1016/j.mex.2014.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/29/2022] Open
Abstract
Marine viruses are the most abundant entities in the ocean and play crucial roles in the marine ecological system. However, understanding of viral diversity on large scale depends on efficient and reliable viral purification and concentration techniques. Here, we report on developing an efficient method to purify and concentrate viruses from large body of high turbidity seawater. The developed method characterizes with high viral recovery efficiency, high concentration factor, high viral particle densities and high-throughput, and is reliable for viral concentration from high turbidity seawater. Recovered viral particles were used directly for subsequent analysis by epifluorescence microscopy, transmission electron microscopy and metagenomic sequencing. Three points are essential for this method:The sampled seawater (>150 L) was initially divided into two parts, water fraction and settled matter fraction, after natural sedimentation. Both viruses in the water fraction concentrated by tangential flow filtration (TFF) and viruses isolated from the settled matter fraction were considered as the whole viral community in high turbidity seawater. The viral concentrates were re-concentrated by using centrifugal filter device in order to obtain high density of viral particles.
Collapse
|
11
|
Comeau AM, Arbiol C, Krisch HM. Composite conserved promoter-terminator motifs (PeSLs) that mediate modular shuffling in the diverse T4-like myoviruses. Genome Biol Evol 2014; 6:1611-9. [PMID: 24951563 PMCID: PMC4122927 DOI: 10.1093/gbe/evu129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2014] [Indexed: 12/01/2022] Open
Abstract
The diverse T4-like phages (Tquatrovirinae) infect a wide array of gram-negative bacterial hosts. The genome architecture of these phages is generally well conserved, most of the phylogenetically variable genes being grouped together in a series hyperplastic regions (HPRs) that are interspersed among large blocks of conserved core genes. Recent evidence from a pair of closely related T4-like phages has suggested that small, composite terminator/promoter sequences (promoterearly stem loop [PeSLs]) were implicated in mediating the high levels of genetic plasticity by indels occurring within the HPRs. Here, we present the genome sequence analysis of two T4-like phages, PST (168 kb, 272 open reading frames [ORFs]) and nt-1 (248 kb, 405 ORFs). These two phages were chosen for comparative sequence analysis because, although they are closely related to phages that have been previously sequenced (T4 and KVP40, respectively), they have different host ranges. In each case, one member of the pair infects a bacterial strain that is a human pathogen, whereas the other phage's host is a nonpathogen. Despite belonging to phylogenetically distant branches of the T4-likes, these pairs of phage have diverged from each other in part by a mechanism apparently involving PeSL-mediated recombination. This analysis confirms a role of PeSL sequences in the generation of genomic diversity by serving as a point of genetic exchange between otherwise unrelated sequences within the HPRs. Finally, the palette of divergent genes swapped by PeSL-mediated homologous recombination is discussed in the context of the PeSLs' potentially important role in facilitating phage adaption to new hosts and environments.
Collapse
Affiliation(s)
- André M Comeau
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, CanadaPresent address: Department of Pharmacology, Dalhousie University, Halifax, Canada.
| | - Christine Arbiol
- CNRS, UMR7258, CRCM, Marseille, FranceInserm, U1068, CRCM, Marseille, FranceInstitut Paoli-Calmettes, Marseille, FranceAix-Marseille Université, Marseille, France
| | - Henry M Krisch
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique-UMR5100, Université Paul Sabatier, Toulouse, FranceRetirement address: Avenue du Géneral Guisan 38, Sierre, Switzerland
| |
Collapse
|
12
|
Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A. Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol 2014; 27:185-90. [PMID: 24598212 DOI: 10.1016/j.copbio.2014.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
Predator-prey interactions are a main issue in ecological theory, including multispecies predator-prey relationships and intraguild predation. This knowledge is mainly based on the study of plants and animals, while its relevance for microorganisms is not well understood. The three key groups of micro-predators include protists, predatory bacteria and bacteriophages. They greatly differ in size, in prey specificity, in hunting strategies and in the resulting population dynamics. Yet, their potential to jointly control bacterial populations and reducing biomass in complex environments such as wastewater treatment plants is vast. Here, we present relevant ecological concepts and recent findings on micropredators, and propose that an integrative approach to predation at the microscale should be developed enabling the exploitation of this potential.
Collapse
Affiliation(s)
- Julia Johnke
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Yossi Cohen
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Marina de Leeuw
- Department of Biotechnology Engineering and The National Institute for Biotechnology, Ben Gurion University, 84105 Beer Sheva, Israel
| | - Ariel Kushmaro
- Department of Biotechnology Engineering and The National Institute for Biotechnology, Ben Gurion University, 84105 Beer Sheva, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel.
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| |
Collapse
|
13
|
Drulis-Kawa Z, Olszak T, Danis K, Majkowska-Skrobek G, Ackermann HW. A giant Pseudomonas phage from Poland. Arch Virol 2014; 159:567-72. [PMID: 24072472 PMCID: PMC3936114 DOI: 10.1007/s00705-013-1844-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/31/2013] [Indexed: 11/30/2022]
Abstract
A novel giant phage of the family Myoviridae is described. Pseudomonas phage PA5oct was isolated from a sewage sample from an irrigated field near Wroclaw, Poland. The virion morphology indicates that PA5oct differs from known giant phages. The phage has a head of about 131 nm in diameter and a tail of 136 × 19 nm. Phage PA5oct contains a genome of approximately 375 kbp and differs in size from any tailed phages known. PA5oct was further characterized by determination of its latent period and burst size and its sensitivity to heating, chloroform, and pH.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland,
| | | | | | | | | |
Collapse
|
14
|
Comeau AM, Tremblay D, Moineau S, Rattei T, Kushkina AI, Tovkach FI, Krisch HM, Ackermann HW. Phage morphology recapitulates phylogeny: the comparative genomics of a new group of myoviruses. PLoS One 2012; 7:e40102. [PMID: 22792219 PMCID: PMC3391216 DOI: 10.1371/journal.pone.0040102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
Among dsDNA tailed bacteriophages (Caudovirales), members of the Myoviridae family have the most sophisticated virion design that includes a complex contractile tail structure. The Myoviridae generally have larger genomes than the other phage families. Relatively few "dwarf" myoviruses, those with a genome size of less than 50 kb such as those of the Mu group, have been analyzed in extenso. Here we report on the genome sequencing and morphological characterization of a new group of such phages that infect a diverse range of Proteobacteria, namely Aeromonas salmonicida phage 56, Vibrio cholerae phages 138 and CP-T1, Bdellovibrio phage φ1422, and Pectobacterium carotovorum phage ZF40. This group of dwarf myoviruses shares an identical virion morphology, characterized by usually short contractile tails, and have genome sizes of approximately 45 kb. Although their genome sequences are variable in their lysogeny, replication, and host adaption modules, presumably reflecting differing lifestyles and hosts, their structural and morphogenesis modules have been evolutionarily constrained by their virion morphology. Comparative genomic analysis reveals that these phages, along with related prophage genomes, form a new coherent group within the Myoviridae. The results presented in this communication support the hypothesis that the diversity of phages may be more structured than generally believed and that the innumerable phages in the biosphere all belong to discrete lineages or families.
Collapse
Affiliation(s)
- André M Comeau
- Québec-Océan, Département de Biologie, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|