1
|
George JT, Burman N, Wilkinson RA, de Silva S, McKelvey-Pham Q, Buyukyoruk M, Dale A, Landman H, Graham A, DeLuca SZ, Wiedenheft B. Structural basis of antiphage defense by an ATPase-associated reverse transcriptase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645336. [PMID: 40196496 PMCID: PMC11974896 DOI: 10.1101/2025.03.26.645336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Reverse transcriptases (RTs) have well-established roles in the replication and spread of retroviruses and retrotransposons. However, recent evidence suggests that RTs have been conscripted by cells for diverse roles in antiviral defense. Here we determine structures of a type I-A retron, which explain how RNA, DNA, RT, HNH-nuclease and four molecules of an SMC-family ATPase assemble into a 364 kDa complex that provides phage defense. We show that phage-encoded nucleases trigger degradation of the retron-associated DNA, leading to disassembly of the retron and activation of the HNH nuclease. The HNH nuclease cleaves tRNASer, stalling protein synthesis and arresting viral replication. Taken together, these data reveal diverse and paradoxical roles for RTs in the perpetuation and elimination of genetic parasites.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Nathaniel Burman
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Royce A. Wilkinson
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Senuri de Silva
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Quynh McKelvey-Pham
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Murat Buyukyoruk
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Adelaide Dale
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Hannah Landman
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Ava Graham
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Steven Z. DeLuca
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Blake Wiedenheft
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| |
Collapse
|
2
|
Duarte J, Trindade D, Oliveira V, Gomes NCM, Calado R, Pereira C, Almeida A. Isolation and Characterization of Infection of Four New Bacteriophages Infecting a Vibrio parahaemolyticus Strain. Antibiotics (Basel) 2024; 13:1086. [PMID: 39596779 PMCID: PMC11591531 DOI: 10.3390/antibiotics13111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Bacteria from genus Vibrio continue to be one of the most common threats to aquaculture sustainability. Vibrio spp. have been associated with infectious outbreaks in fish, shrimp, bivalves and even algae farms worldwide. Moreover, several Vibrio spp. are also pathogens that impact human health and are a threat to public health when transferred to consumers through contaminated seafood products. The use of bacteriophages is an evolving technology that could be applied in the treatment of Vibrio spp. either to protect aquaculture farms or to decontaminate seafood, namely bivalves during their depuration. In the present study, bacteriophages vB_VpS_LMAVpS1 (S1) vB_VpS_LMAVpVPP (VPP), vB_VpS_LMAVpSH (SH) and vB_VpS_LMAVpH (H) infecting V. parahaemolyticus were isolated and characterized. All phages presented fast adsorption rates and were able to control V. parahaemolyticus at all multiplicity of infections (MOIs) tested (MOI of 1, 10 and 100), with reductions of more than 4 log CFU/mL being recorded, but only in the presence of divalent cation calcium. The rate of emergence of phage-resistant mutants was very low (1.8 × 10-6 to 3.1 × 10-6). Bacterial phage resistance was not permanent and led to a loss of bacterial fitness. All four phages presented with lysins encoded in their genomes. The results presented provide valuable insights for future studies in the application of these bacteriophages in different scenarios to control, decontaminate or treat bacterial infections or contaminations of V. parahaemolyticus.
Collapse
Affiliation(s)
- João Duarte
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.); (D.T.); (V.O.); (N.C.M.G.)
| | - David Trindade
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.); (D.T.); (V.O.); (N.C.M.G.)
| | - Vanessa Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.); (D.T.); (V.O.); (N.C.M.G.)
| | - Newton C. M. Gomes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.); (D.T.); (V.O.); (N.C.M.G.)
| | - Ricardo Calado
- Laboratory for Innovation and Sustainability of Marine Biological Resources of the University of Aveiro (ECOMARE), Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carla Pereira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.); (D.T.); (V.O.); (N.C.M.G.)
| | - Adelaide Almeida
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (J.D.); (D.T.); (V.O.); (N.C.M.G.)
| |
Collapse
|
3
|
Characterization and genome analysis of Escherichia phage fBC-Eco01, isolated from wastewater in Tunisia. Arch Virol 2023; 168:44. [PMID: 36609878 PMCID: PMC9825357 DOI: 10.1007/s00705-022-05680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 01/09/2023]
Abstract
The rise of antibiotic resistance in bacterial strains has led to vigorous exploration for alternative treatments. To this end, phage therapy has been revisited, and it is gaining increasing attention, as it may represent an efficient alternative for treating multiresistant pathogenic bacteria. Phage therapy is considered safe, and phages do not infect eukaryotic cells. There have been many studies investigating phage-host bacteria interactions and the ability of phages to target specific hosts. Escherichia coli is the causative agent of a multitude of infections, ranging from urinary tract infections to sepsis, with growing antibiotic resistance. In this study, we characterized the Escherichia phage fBC-Eco01, which was isolated from a water sample collected at Oued, Tunis. Electron microscopy showed that fBC-Eco01 phage particles have siphovirus morphology, with an icosahedral head of 61 ± 3 nm in diameter and a non-contractile tail of 94 ± 2 nm in length and 12 ± 0.9 nm in width. The genome of fBC-Eco01 is a linear double-stranded DNA of 43.466 bp with a GC content of 50.4%. Comparison to databases allowed annotation of the functions to 39 of the 78 predicted gene products. A single-step growth curve revealed that fBC-Eco01 has a latent period of 30 minutes and a burst size of 175 plaque-forming units (PFU) per infected cell. Genomic analysis indicated that fBC-Eco01 is a member of the subfamily Guernseyvirinae. It is most closely related to a group of phages of the genus Kagunavirus that infect Enterobacter, Raoultella, and Escherichia strains.
Collapse
|
4
|
Badawy S, Baka ZAM, Abou-Dobara MI, El-Sayed AKA, Skurnik M. Biological and molecular characterization of fEg-Eco19, a lytic bacteriophage active against an antibiotic-resistant clinical Escherichia coli isolate. Arch Virol 2022; 167:1333-1341. [PMID: 35399144 PMCID: PMC9038960 DOI: 10.1007/s00705-022-05426-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
Abstract
Characterization of bacteriophages facilitates better understanding of their biology, host specificity, genomic diversity, and adaptation to their bacterial hosts. This, in turn, is important for the exploitation of phages for therapeutic purposes, as the use of uncharacterized phages may lead to treatment failure. The present study describes the isolation and characterization of a bacteriophage effective against the important clinical pathogen Escherichia coli, which shows increasing accumulation of antibiotic resistance. Phage fEg-Eco19, which is specific for a clinical E. coli strain, was isolated from an Egyptian sewage sample. Phage fEg-Eco19 formed clear, sharp-edged, round plaques. Electron microscopy showed that the isolated phage is tailed and therefore belongs to the order Caudovirales, and morphologically, it resembles siphoviruses. The diameter of the icosahedral head of fEg-Eco19 is 68 ± 2 nm, and the non-contractile tail length and diameter are 118 ± 0.2 and 13 ± 0.6 nm, respectively. The host range of the phage was found to be narrow, as it infected only two out of 137 clinical E. coli strains tested. The phage genome is 45,805 bp in length with a GC content of 50.3% and contains 76 predicted genes. Comparison of predicted and experimental restriction digestion patterns allowed rough mapping of the physical ends of the phage genome, which was confirmed using the PhageTerm tool. Annotation of the predicted genes revealed gene products belonging to several functional groups, including regulatory proteins, DNA packaging and phage structural proteins, host lysis proteins, and proteins involved in DNA/RNA metabolism and replication.
Collapse
Affiliation(s)
- Shimaa Badawy
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Zakaria A. M. Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Mohamed I. Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Ahmed K. A. El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
| |
Collapse
|
5
|
Badawy S, Pajunen MI, Haiko J, Baka ZAM, Abou-Dobara MI, El-Sayed AKA, Skurnik M. Identification and Functional Analysis of Temperate Siphoviridae Bacteriophages of Acinetobacter baumannii. Viruses 2020; 12:v12060604. [PMID: 32486497 PMCID: PMC7354433 DOI: 10.3390/v12060604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that presents a serious clinical challenge due to its increasing resistance to all available antibiotics. Phage therapy has been introduced recently to treat antibiotic-incurable A. baumannii infections. In search for new A. baumannii specific bacteriophages, 20 clinical A. baumannii strains were used in two pools in an attempt to enrich phages from sewage. The enrichment resulted in induction of resident prophage(s) and three temperate bacteriophages, named vB_AbaS_fEg-Aba01, vB_AbaS_fLi-Aba02 and vB_AbaS_fLi-Aba03, all able to infect only one strain (#6597) of the 20 clinical strains, were isolated. Morphological characteristics obtained by transmission electron microscopy together with the genomic information revealed that the phages belong to the family Siphoviridae. The ca. 35 kb genomic sequences of the phages were >99% identical to each other. The linear ds DNA genomes of the phages contained 10 nt cohesive end termini, 52–54 predicted genes, an attP site and one tRNA gene each. A database search revealed an >99% identical prophage in the genome of A. baumannii strain AbPK1 (acc. no. CP024576.1). Over 99% identical prophages were also identified from two of the original 20 clinical strains (#5707 and #5920) and both were shown to be spontaneously inducible, thus very likely being the origins of the isolated phages. The phage vB_AbaS_fEg-Aba01 was also able to lysogenize the susceptible strain #6597 demonstrating that it was fully functional. The phages showed a very narrow host range infecting only two A. baumannii strains. In conclusion, we have isolated and characterized three novel temperate Siphoviridae phages that infect A.baumannii.
Collapse
Affiliation(s)
- Shimaa Badawy
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
| | - Johanna Haiko
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland;
| | - Zakaria A. M. Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Mohamed I. Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Ahmed K. A. El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland;
- Correspondence: ; Tel.: +358-2941-26464
| |
Collapse
|
6
|
Oduor JMO, Kadija E, Nyachieo A, Mureithi MW, Skurnik M. Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential. Viruses 2020; 12:E133. [PMID: 31979276 PMCID: PMC7077315 DOI: 10.3390/v12020133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
Emergence of antibiotic-resistant bacteria is a serious threat to the public health. This is also true for Staphylococcus aureus and other staphylococci. Staphylococcus phages Stab20, Stab21, Stab22, and Stab23, were isolated in Albania. Based on genomic and phylogenetic analysis, they were classified to genus Kayvirus of the subfamily Twortvirinae. In this work, we describe the in-depth characterization of the phages that electron microscopy confirmed to be myoviruses. These phages showed tolerance to pH range of 5.4 to 9.4, to maximum UV radiation energy of 25 µJ/cm2, to temperatures up to 45 °C, and to ethanol concentrations up to 25%, and complete resistance to chloroform. The adsorption rate constants of the phages ranged between 1.0 × 10-9 mL/min and 4.7 × 10-9 mL/min, and the burst size was from 42 to 130 plaque-forming units. The phages Stab20, 21, 22, and 23, originally isolated using Staphylococcusxylosus as a host, demonstrated varied host ranges among different Staphylococcus strains suggesting that they could be included in cocktail formulations for therapeutic or bio-control purpose. Phage particle proteomes, consisting on average of ca 60-70 gene products, revealed, in addition to straight-forward structural proteins, also the presence of enzymes such DNA polymerase, helicases, recombinases, exonucleases, and RNA ligase polymer. They are likely to be injected into the bacteria along with the genomic DNA to take over the host metabolism as soon as possible after infection.
Collapse
Affiliation(s)
- Joseph M. Ochieng’ Oduor
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
| | - Ermir Kadija
- Department of Biology-Chemistry, University of Shkodra “Luigj Gurakuqi”, 4001 Shkodra, Albania;
| | - Atunga Nyachieo
- Department of Reproductive Health & Biology, Phage Biology Section, Institute of Primate Research, P.O. Box, Karen-Nairobi 24481-00502, Kenya;
| | - Marianne W. Mureithi
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00029 HUS Helsinki, Finland
| |
Collapse
|
7
|
Sheppard EC, Rogers S, Harmer NJ, Chahwan R. A universal fluorescence-based toolkit for real-time quantification of DNA and RNA nuclease activity. Sci Rep 2019; 9:8853. [PMID: 31222049 PMCID: PMC6586798 DOI: 10.1038/s41598-019-45356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
DNA and RNA nucleases play a critical role in a growing number of cellular processes ranging from DNA repair to immune surveillance. Nevertheless, many nucleases have unknown or poorly characterized activities. Elucidating nuclease substrate specificities and co-factors can support a more definitive understanding of cellular mechanisms in physiology and disease. Using fluorescence-based methods, we present a quick, safe, cost-effective, and real-time versatile nuclease assay, which uniquely studies nuclease enzyme kinetics. In conjunction with a substrate library we can now analyse nuclease catalytic rates, directionality, and substrate preferences. The assay is sensitive enough to detect kinetics of repair enzymes when confronted with DNA mismatches or DNA methylation sites. We have also extended our analysis to study the kinetics of human single-strand DNA nuclease TREX2, DNA polymerases, RNA, and RNA:DNA nucleases. These nucleases are involved in DNA repair, immune regulation, and have been associated with various diseases, including cancer and immune disorders.
Collapse
Affiliation(s)
- Emily C Sheppard
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sally Rogers
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Richard Chahwan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK. .,Institute of Experimental Immunology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|