1
|
Jothyswarupha KA, Venkataraman S, Rajendran DS, Shri SSS, Sivaprakasam S, Yamini T, Karthik P, Kumar VV. Immobilized enzymes: exploring its potential in food industry applications. Food Sci Biotechnol 2025; 34:1533-1555. [PMID: 40129709 PMCID: PMC11929668 DOI: 10.1007/s10068-024-01742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 03/26/2025] Open
Abstract
The global demand for nutritious, longer-lasting food has spurred the food industry to seek eco-friendly solutions. Enzymes play a vital role in enhancing food quality by improving flavor, texture, and nutritional content. However, challenges like rapid deactivation and non-recoverability of free enzymes are addressed by immobilized enzymes, which enhance efficiency, quality, and sustainability in food processing. Immobilization methods include adsorption, covalent binding, entrapment, encapsulation and cross-liked enzyme aggregates, which enhancing their stability, reusability, and catalytic efficiency. Immobilization of enzyme such as pectinase, amylase, naringinase, cellulase, lactase, glucoamylase, xylanase, invertase, lipase, phytase, and protease have been utilized in fruit, vegetable, baking, dairy, brewing, and feed process due to their high thermostability, improved shelf life, food quality and safety. The catalytic efficiency of immobilized enzymes in detecting and quantifying various food components, contaminants, and quality indicators, also developed functional foods with nutraceuticals benefits, include prebiotic juices, lactose-free dairy products, poly unsaturated fatty acids rich foods, low-calorie sweeteners, fortified food and bioactive peptides. Graphical abstract
Collapse
Affiliation(s)
- K. A. Jothyswarupha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - S. S. Sakthi Shri
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Shivani Sivaprakasam
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Tholeti Yamini
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - P. Karthik
- Centre for Food Nanotechnology (CFN), Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Xylanase covalent binding onto amidated pectin beads: Optimization, thermal, operational and storage stability studies and application. Int J Biol Macromol 2023; 236:124018. [PMID: 36921821 DOI: 10.1016/j.ijbiomac.2023.124018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Amidated pectin-polyethylene imine-glutaraldehyde (AP-PEI-GA) immobilizer was prepared. The ideal protocol that should be adopted during the immobilizer preparation was investigated via Box-Behnken design (BBD), and it comprised processing the AP beads with 3.4 % (w/w) PEI solution of pH 9.65 followed by 5.96 % (v/v) GA solution. The obtained AP-PEI-GA immobilizer was efficient, and it acquired 3.03 U.g-1 of immobilized xylanase (im-xylanase) activity. The computed Km and Vmax values for AP-PEI-GA im-xylanase were 16.67 mg.ml-1 and 20 g.ml-1.min-1, respectively. Through covalent coupling to AP-PEI-GA, Aspergillus niger xylanase thermodynamic properties T1/2 and D-values were increased by 2.05, 3.08, and 1.35 at 40, 50, and 60 °C, respectively. ΔHd and ΔGd for AP-PEI-GA im-xylanase at 40, 50, and 60 °C were higher than those for free form emphasizing more resistance to thermal denaturation. Im-xylanase showed 100 % activity for 20 successive cycles and hydrolyzed different agro-industrial wastes into reducing sugar and xylooligosaccharides (XOS) with more efficiency on pea peel (PP). AP-PEI-GA im-xylanase, PP weight, and hydrolysis time that should be adopted to obtain the highest reducing sugar and XOS yield were optimized through central composite design (CCD). Extracted XOS showed prebiotic and anti-oxidant activities.
Collapse
|
3
|
Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, Sharma P, Kumar S, Lam S, Nadda AK. Mechano-chemical and biological energetics of immobilized enzymes onto functionalized polymers and their applications. Bioengineered 2022; 13:10518-10539. [PMID: 35443858 PMCID: PMC9208500 DOI: 10.1080/21655979.2022.2062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Changlei Xia
- Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry UniversityCo-Innovation, Nanjing,Jiangsu, China
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - SuShiung Lam
- Higher Institution Centre of Excellence (Hicoe), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
4
|
Chang JC, Chen YA, Lin SC. Development and application of metal chelate-epoxy bifunctional loofah sponge for the purification and immobilization of recombinant trehalose synthase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Teng C, Tang H, Li X, Zhu Y, Fan G, Yang R. Production of xylo-oligosaccharides using a Streptomyces rochei xylanase immobilized on Eudragit S-100. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1964483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Huihua Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ran Yang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
6
|
He S, Wu X, Ma B, Xu Y. High specific immobilization of His-tagged recombinant Microbacterium esterase by Ni-NTA magnetic chitosan microspheres for efficient synthesis of key chiral intermediate of d-biotin. Bioprocess Biosyst Eng 2021; 44:2193-2204. [PMID: 34089090 DOI: 10.1007/s00449-021-02595-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022]
Abstract
The novel Ni-NTA-functionalized magnetic chitosan microspheres (MCS-NTA-Ni) were prepared via amino functionalization of MCS with epichlorohydrin and ethylenediamine, followed by the introduction of the aldehyde groups and NTA in turn, and nickel (II) ions were chelated in the end. MCS-NTA-Ni contained numerous long-armed NTA-Ni surface groups, ensuring high enzyme loading and providing more space and flexibility to attach enzymes and maintain their activity. This microsphere can have highly selective adsorption of his-tagged recombinant protein. The his-tagged recombinant Microbacterium esterase of E. coli BL21 (DE3)/pET21a-EstSIT01 was first immobilized on MCS-NTA-Ni by affinity fixation, giving high immobilization yield (90.1%) and enzyme loading (120 mg/g). Compared with free esterase, the immobilized esterase was found to exhibit higher pH stability and thermal stability. In addition, the immobilized esterase had excellent reusability for the synthesis of key chiral intermediate of d-biotin and the substrate conversion could still keep 100% after 8 cycles continuously.
Collapse
Affiliation(s)
- Song He
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiaomei Wu
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Baodi Ma
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Yi Xu
- School of Chemistry and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
7
|
Biochemical characterization and enhanced production of endoxylanase from thermophilic mould Myceliophthora thermophila. Bioprocess Biosyst Eng 2021; 44:1539-1555. [PMID: 33765291 DOI: 10.1007/s00449-021-02539-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/13/2021] [Indexed: 10/21/2022]
Abstract
Endoxylanase production from M. thermophila BJTLRMDU3 using rice straw was enhanced to 2.53-fold after optimization in solid state fermentation (SSF). Endoxylanase was purified to homogeneity employing ammonium sulfate precipitation followed by gel filtration chromatography and had a molecular mass of ~ 25 kDa estimated by SDS-PAGE. Optimal endoxylanase activity was recorded at pH 5.0 and 60 °C. Purified enzyme showed complete tolerance to n-hexane, but activity was slightly inhibited by other organic solvents. Among surfactants, Tweens (20, 60, and 80) and Triton X 100 slightly enhanced the enzyme activity. The Vmax and Km values for purified endoxylanase were 6.29 µmol/min/mg protein and 5.4 mg/ml, respectively. Endoxylanase released 79.08 and 42.95% higher reducing sugars and soluble proteins, respectively, which control after 48 h at 60 °C from poultry feed. Synergistic effect of endoxylanase (100 U/g) and phytase (15 U/g) on poultry feed released higher amount of reducing sugars (58.58 mg/feed), soluble proteins (42.48 mg/g feed), and inorganic phosphate (28.34 mg/feed) in contrast to control having 23.55, 16.98, and 10.46 mg/feed of reducing sugars, soluble proteins, and inorganic phosphate, respectively, at 60 °C supplemented with endoxylanase only.
Collapse
|
8
|
You CX, Huang PH, Lin SC. Concomitant selective adsorption and covalent immobilization of a His-tagged protein switch with silica-based metal chelate-epoxy bifunctional adsorbents. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Bindu V, Mohanan P. Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: A kinetic and thermodynamic study. Carbohydr Res 2020; 498:108185. [DOI: 10.1016/j.carres.2020.108185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/05/2023]
|
10
|
Cross-Linking with Polyethylenimine Confers Better Functional Characteristics to an Immobilized β-glucosidase from Exiguobacterium antarcticum B7. Catalysts 2019. [DOI: 10.3390/catal9030223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
β-glucosidases are ubiquitous, well-characterized and biologically important enzymes with considerable uses in industrial sectors. Here, a tetrameric β-glucosidase from Exiguobacterium antarcticum B7 (EaBglA) was immobilized on different activated agarose supports followed by post-immobilization with poly-functional macromolecules. The best result was obtained by the immobilization of EaBglA on metal glutaraldehyde-activated agarose support following cross-linking with polyethylenimine. Interestingly, the immobilized EaBglA was 46-fold more stable than its free form and showed optimum pH in the acidic region, with high catalytic activity in the pH range from 3 to 9, while the free EaBglA showed catalytic activity in a narrow pH range (>80% at pH 6.0–8.0) and optimum pH at 7.0. EaBglA had the optimum temperature changed from 30 °C to 50 °C with the immobilization step. The immobilized EaBglA showed an expressive adaptation to pH and it was tolerant to ethanol and glucose, indicating suitable properties involving the saccharification process. Even after 9 cycles of reuse, the immobilized β-glucosidase retained about 100% of its initial activity, demonstrating great operational stability. Hence, the current study describes an efficient strategy to increase the functional characteristics of a tetrameric β-glucosidase for future use in the bioethanol production.
Collapse
|
11
|
Rajagopalan G, Shanmugavelu K, Yang KL. Production of xylooligosaccharides from hardwood xylan by using immobilized endoxylanase of Clostridium strain BOH3. RSC Adv 2016. [DOI: 10.1039/c6ra17085d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endoxylanase ofClostridiumsp. BOH3 was immobilized in calcium alginate/silica gel matrix with a 100% yield. This immobilized xylanase can be reused 7 times to produce prebiotic xylooligosaccharides from hardwood xylan with 62% of activity recovery.
Collapse
Affiliation(s)
- Gobinath Rajagopalan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
- Faculty of Life Sciences and Biotechnology
- South Asian University
| | - Kavitha Shanmugavelu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
12
|
Diogo JA, Zanphorlin LM, Sato HH, Murakami MT, Ruller R. Molecular cloning, overexpression, purification and crystallographic analysis of a GH43 β-xylosidase from Bacillus licheniformis. Acta Crystallogr F Struct Biol Commun 2015; 71:962-5. [PMID: 26249682 PMCID: PMC4528924 DOI: 10.1107/s2053230x15009978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/22/2015] [Indexed: 11/10/2022] Open
Abstract
β-Xylosidases (EC 3.2.1.37) catalyze the hydrolysis of short xylooligosaccharides into xylose, which is an essential step in the complete depolymerization of xylan, the major hemicellulosic polysaccharide of plant cell walls, and has great biotechnological relevance for the production of lignocellulose-based biofuels and the paper industry. In this study, a GH43 β-xylosidase identified from the bacterium Bacillus licheniformis (BlXylA) was cloned into the the pET-28a bacterial expression vector, recombinantly overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity by metal-affinity and size-exclusion chromatography. The protein was crystallized in the presence of the organic solvent 2-methyl-2,4-pentanediol and a single crystal diffracted to 2.49 Å resolution. The X-ray diffraction data were indexed in the monoclinic space group C2, with unit-cell parameters a = 152.82, b = 41.9, c = 71.79 Å, β = 91.7°. Structural characterization of this enzyme will contribute to a better understanding of the structural requirements for xylooligosaccharide specificity within the GH43 family.
Collapse
Affiliation(s)
- José Alberto Diogo
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), National Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas-SP, Brazil
| | - Leticia Maria Zanphorlin
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), National Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas-SP, Brazil
| | - Hélia Harumi Sato
- Department of Food Science, University of Campinas, Rua Monteiro Lobato 80, Cidade Universitária, 13081-970 Campinas-SP, Brazil
| | - Mario Tyago Murakami
- Brazilian Biosciences National Laboratory (LNBio), National Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas-SP, Brazil
| | - Roberto Ruller
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), National Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas-SP, Brazil
| |
Collapse
|