1
|
Jeong SH, Nguyen KT, Nguyen MT, You JS, Kim BH, Choe HC, Ahn SG. DMP1 and IFITM5 Regulate Osteogenic Differentiation of MC3T3-E1 on PEO-Treated Ti-6Al-4V-Ca 2+/P i surface. ACS Biomater Sci Eng 2023; 9:1377-1390. [PMID: 36802481 DOI: 10.1021/acsbiomaterials.2c01296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Despite numerous studies on various surface modifications on titanium and its alloys, it remains unclear what kind of titanium-based surface modifications are capable of controlling cell activity. This study aimed to understand the mechanism at the cellular and molecular levels and investigate the in vitro response of osteoblastic MC3T3-E1 cultured on the Ti-6Al-4V surface modified by plasma electrolytic oxidation (PEO) treatment. A Ti-6Al-4V surface was prepared by PEO at 180, 280, and 380 V for 3 or 10 min in an electrolyte containing Ca2+/Pi ions. Our results showed that PEO-treated Ti-6Al-4V-Ca2+/Pi surfaces enhanced the cell attachment and differentiation of MC3T3-E1 compared to the untreated Ti-6Al-4V control but did not affect cytotoxicity as shown by cell proliferation and cell death. Interestingly, on the Ti-6Al-4V-Ca2+/Pi surface treated by PEO at 280 V for 3 or 10 min, MC3T3-E1 showed a higher initial adhesion and mineralization. In addition, the alkaline phosphatase (ALP) activity significantly increased in MC3T3-E1 on the PEO-treated Ti-6Al-4V-Ca2+/Pi (280 V for 3 or 10 min). In RNA-seq analysis, the expression of dentin matrix protein 1 (DMP1), sortilin 1 (Sort1), signal-induced proliferation-associated 1 like 2 (SIPA1L2), and interferon-induced transmembrane protein 5 (IFITM5) was induced during the osteogenic differentiation of MC3T3-E1 on the PEO-treated Ti-6Al-4V-Ca2+/Pi. DMP1 and IFITM5 silencing decreased the expression of bone differentiation-related mRNAs and proteins and ALP activity in MC3T3-E1. These results suggest that the PEO-treated Ti-6Al-4V-Ca2+/Pi surface induces osteoblast differentiation by regulating the expression of DMP1 and IFITM5. Therefore, surface microstructure modification through PEO coatings with Ca2+/Pi ions could be used as a valuable method to improve biocompatibility properties of titanium alloys.
Collapse
Affiliation(s)
- Se-Ho Jeong
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Khanh Toan Nguyen
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Manh Tuong Nguyen
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Byung-Hoon Kim
- Advanced Functional Surface and Biomaterials Research Lab, Department of Dental Materials and Research Center of Surface Control for Oral Tissue Regeneration (BRL Center of NRF), College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Han-Cheol Choe
- Advanced Functional Surface and Biomaterials Research Lab, Department of Dental Materials and Research Center of Surface Control for Oral Tissue Regeneration (BRL Center of NRF), College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Grenadyorov AS, Solovyev AA, Oskomov KV, Semenov VA, Zhulkov MO, Sirota DA, Chernyavskiy AM, Karmadonova NA, Malashchenko VV, Litvinova LS, Khaziakhmatova OG, Gazatova ND, Khlusov IA. Morphofunctional reaction of leukocytes and platelets in in vitro contact with a-C:H:SiO x -coated Ti-6Al-4V substrate. J Biomed Mater Res A 2023; 111:309-321. [PMID: 36349977 DOI: 10.1002/jbm.a.37470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/20/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
The article deals with the plasma-assisted chemical vapor deposition of 0.3-1.4 μm thick a-C:H:SiOx films in a mixture of argon and polyphenylmethylsiloxane vapor onto the Ti-6Al-4V alloy substrate, which is often used as an implant material. The a-C:H:SiOx film structure is studied by the Fourier-transform infrared and Raman spectroscopies. The pull-off adhesion test assesses the adhesive strength of a-C:H:SiOx films, and the ball-on-disk method is employed to measure their wear rate and friction coefficient. According to these studies, a-C:H:SiOx films are highly adhesive to the Ti-6Al-4V substrate, have low (0.056) friction coefficient and wear rate (9.8 × 10-8 mm3 N-1 m-1 ) in phosphate-buffered saline at 40°C. In vitro studies show neither thrombogenicity nor cytotoxicity of the a-C:H:SiOx film for the human blood mononuclear cells (hBMNCs). The in vitro contact between the hBMNC culture and a-C:H:SiOx films 0.8-1.4 μm thick deposited onto Ti-6Al-4V substrates reduces a 24-hour secretion of pro-inflammatory cytokines and chemokines IL-8, IL-17, TNFα, RANTES, and MCP-1. This reduction is more significant when the film thickness is 1.4 μm and implies its potential anti-inflammatory effect and possible application in cardiovascular surgery. The dependence is suggested for the concentration of anti-inflammatory cytokines and chemokines and the a-C:H:SiOx film thickness, which correlates with the surface wettability and electrostatic potential. The article discusses the possible applications of the anti-inflammatory effect and low thrombogenicity of a-C:H:SiOx films in cardiovascular surgery.
Collapse
Affiliation(s)
- Alexander S Grenadyorov
- Laboratory of Applied Electronics, The Institute of High Current Electronics SB RAS, Tomsk, Tomsk region, Russia
| | - Andrey A Solovyev
- Laboratory of Applied Electronics, The Institute of High Current Electronics SB RAS, Tomsk, Tomsk region, Russia
| | - Konstantin V Oskomov
- Laboratory of Applied Electronics, The Institute of High Current Electronics SB RAS, Tomsk, Tomsk region, Russia
| | - Vjacheslav A Semenov
- Laboratory of Applied Electronics, The Institute of High Current Electronics SB RAS, Tomsk, Tomsk region, Russia
| | - Maksim O Zhulkov
- Laboratory of Applied Electronics, The Institute of High Current Electronics SB RAS, Tomsk, Tomsk region, Russia.,Centre for Surgery of the Aorta, Coronary and Peripheral Arteries, E. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, Novosibirsk, Novosibirsk region, Russia
| | - Dmitriy A Sirota
- Laboratory of Applied Electronics, The Institute of High Current Electronics SB RAS, Tomsk, Tomsk region, Russia.,Centre for Surgery of the Aorta, Coronary and Peripheral Arteries, E. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, Novosibirsk, Novosibirsk region, Russia
| | - Alexander M Chernyavskiy
- Laboratory of Applied Electronics, The Institute of High Current Electronics SB RAS, Tomsk, Tomsk region, Russia.,Centre for Surgery of the Aorta, Coronary and Peripheral Arteries, E. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, Novosibirsk, Novosibirsk region, Russia
| | - Nataly A Karmadonova
- Centre for Surgery of the Aorta, Coronary and Peripheral Arteries, E. Meshalkin National Medical Research Center of Ministry of Health of Russian Federation, Novosibirsk, Novosibirsk region, Russia
| | - Vladimir V Malashchenko
- Laboratory of Applied Electronics, The Institute of High Current Electronics SB RAS, Tomsk, Tomsk region, Russia.,Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Larisa S Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Olga G Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Natalia D Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia
| | - Igor A Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Kaliningrad region, Russia.,Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Tomsk region, Russia
| |
Collapse
|
3
|
Xia C, Ma X, Zhang X, Li K, Tan J, Qiao Y, Liu X. Enhanced physicochemical and biological properties of C/Cu dual ions implanted medical titanium. Bioact Mater 2020; 5:377-386. [PMID: 32211565 PMCID: PMC7083793 DOI: 10.1016/j.bioactmat.2020.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022] Open
Abstract
It is increasingly popular for titanium and its alloys to be utilized as the medical implants. However, their bio-inert nature and lack of antibacterial ability limit their applications. In this work, by utilizing plasma immersion ion implantation and deposition (PIII&D) technology, the titanium surface was modified by C/Cu co-implantation. The mechanical property, corrosion resistance, antibacterial ability and cytocompatibility of modified samples were studied. Results indicate that after C/Cu co-implantation, copper nanoparticles were observed on the surface of titanium, and titanium carbide existed on the near surface region of titanium. The modified surface displayed good mechanical property and corrosion resistance. The Cu/C galvanic corrosion existed on the titanium surface implanted by C/Cu dual ions, and release of copper ions can be effectively controlled by the galvanic corrosion effect. Moreover, improved antibacterial performance of titanium surface can be achieved without cytotoxicity.
Collapse
Affiliation(s)
- Chao Xia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Normal University, Shanghai, 200234, China
| | - Kunqiang Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
| |
Collapse
|
4
|
Merino JJ, Cabaña-Muñoz ME, Toledano Gasca A, Garcimartín A, Benedí J, Camacho-Alonso F, Parmigiani-Izquierdo JM. Elevated Systemic L-Kynurenine/L-Tryptophan Ratio and Increased IL-1 Beta and Chemokine (CX3CL1, MCP-1) Proinflammatory Mediators in Patients with Long-Term Titanium Dental Implants. J Clin Med 2019; 8:jcm8091368. [PMID: 31480733 PMCID: PMC6780981 DOI: 10.3390/jcm8091368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/04/2023] Open
Abstract
Titanium is the mean biocompatible metal found in dental titanium alloys (Ti-6Al-4V). The safety of certain dental biomaterial amalgams has been questioned in patients. The levels of several systemic cytokines (interleukin (IL)-1 beta, IL-4: pg/mL) and chemokines (monocyte chemoattractant protein-1 (MCP-1), soluble fractalkine (CX3CL1: pg/mL) were determined using ELISA and compared between these study groups. The study included 30 controls without dental materials (cont), 57 patients with long-term titanium dental implants plus amalgams (A + I group) as well as 55 patients with long-term dental amalgam alone (A group). All patients (except controls) have had dental titanium implants (Ti-6Al-4V) and/or amalgams for at least 10 years (average: 15 years). We evaluated whether systemic levels of cytokines/chemokines, kyn/L-trp ratio and aromatic amino acid levels (HPLC: mM/L, Phe, L-Trp, His, Treo) could be altered in patients with long-term dental titanium and/or amalgams. These systemic markers were evaluated in 142 patients. The A + I group had higher L-Kynurenine/L-Tryptophan ratios than patients with long-term dental amalgam fillings alone (A). In addition, levels of IL-1 Beta cytokine, CX3CL1 and MCP-1 chemokines were higher in the A + I group than in the A group (A). The increased L-kyn/L-trp ratio and MCP-1 and fractalkine receptor (CX3CR1) elevations could suggest enhanced chemotactic responses by these chemokines in the A + I group.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), c/Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
- Centro CIROM, Centro de Implantología y Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain.
| | | | | | - Alba Garcimartín
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), c/Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), c/Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
5
|
Merino JJ, Parmigiani-Izquierdo JM, Toledano Gasca A, Cabaña-Muñoz ME. The Long-Term Algae Extract ( Chlorella and Fucus sp) and Aminosulphurate Supplementation Modulate SOD-1 Activity and Decrease Heavy Metals (Hg ++, Sn) Levels in Patients with Long-Term Dental Titanium Implants and Amalgam Fillings Restorations. Antioxidants (Basel) 2019; 8:antiox8040101. [PMID: 31014007 PMCID: PMC6523211 DOI: 10.3390/antiox8040101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
The toxicity of heavy metals such as Hg++ is a serious risk for human health. We evaluated whether 90 days of nutritional supplementation (d90, n = 16) with Chlorella vulgaris (CV) and Fucus sp extracts in conjunction with aminosulphurate (nutraceuticals) supplementation could detox heavy metal levels in patients with long-term titanium dental implants (average: three, average: 12 years in mouth) and/or amalgam fillings (average: four, average: 15 years) compared to baseline levels (d0: before any supplementation, n = 16) and untreated controls (without dental materials) of similar age (control, n = 21). In this study, we compared levels of several heavy metals/oligoelements in these patients after 90 days (n = 16) of nutritional supplementation with CV and aminozuphrates extract with their own baseline levels (d0, n = 16) and untreated controls (n = 21); 16 patients averaging 44 age years old with long-term dental amalgams and titanium implants for at least 10 years (average: 12 years) were recruited, as well as 21 non-supplemented controls (without dental materials) of similar age. The following heavy metals were quantified in hair samples as index of chronic heavy metal exposure before and after 90 days supplementation using inductively coupled plasma-mass spectrometry (ICP-MS) and expressed as μg/g of hair (Al, Hg++, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, and Ti). We also measured several oligoelements (Ca++, Mg++, Na+, K+, Cu++, Zn++, Mn++, Cr, V, Mo, B, I, P, Se, Sr, P, Co, Fe++, Ge, Rb, and Zr). The algae and nutraceutical supplementation during 90 consecutive days decreased Hg++, Ag, Sn, and Pb at 90 days as compared to baseline levels. The mercury levels at 90 days decreased as compared with the untreated controls. The supplementation contributed to reducing heavy metal levels. There were increased lithium (Li) and germanium (Ge) levels after supplementation in patients with long-term dental titanium implants and amalgams. They also (d90) increased manganesum (Mn++), phosphorum (P), and iron (Fe++) levels as compared with their own basal levels (d0) and the untreated controls. Finally, decreased SuperOxide Dismutase-1 (SOD-1) activity (saliva) was observed after 90 days of supplementation as compared with basal levels (before any supplementation, d0), suggesting antioxidant effects. Conversely, we detected increased SOD-1 activity after 90 days as compared with untreated controls. This SOD-1 regulation could induce antioxidant effects in these patients. The long-term treatment with algae extract and aminosulphurates for 90 consecutive days decreased certain heavy metal levels (Hg++, Ag, Sn, Pb, and U) as compared with basal levels. However, Hg++ and Sn reductions were observed after 90 days as compared with untreated controls (without dental materials). The dental amalgam restoration using activated nasal filters in conjunction with long-term nutritional supplementation enhanced heavy metals removal. Finally, the long-term supplementation with these algae and aminoazuphrates was safe and non-toxic in patients. These supplements prevented certain deficits in oligoelements without affecting their Na+/K+ ratios after long-term nutraceutical supplementation.
Collapse
Affiliation(s)
- José Joaquín Merino
- Clínica CIROM, Centro de Implantología and Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain.
| | | | | | | |
Collapse
|
6
|
Kapnisis K, Constantinou M, Kyrkou M, Nikolaou P, Anayiotos A, Constantinides G. Nanotribological response of a-C:H coated metallic biomaterials: the cases of stainless steel, titanium, and niobium. J Appl Biomater Funct Mater 2018; 16:230-240. [PMID: 29974806 DOI: 10.1177/2280800018782840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Wear and corrosion have been identified as two of the major forms of medical implant failures. This study aims to improve the surface, protective and tribological characteristics of bare metals used for medical implants, so as to improve scratch resistance and increase lifetime. Methods Hydrogenated amorphous carbon (a-C:H) films were deposited, using plasma enhanced chemical vapor deposition (PECVD), on stainless steel (SS), titanium (Ti) and niobium (Nb) metal plates. Nanomechanical and nanotribological responses were investigated before and after a-C:H deposition. Film thickness and density were quantified through X-ray reflectivity, and surface morphology before and after deposition were measured using atomic force microscopy, whereas the tribomechanical characteristics were probed using instrumented indentation. Results and conclusions Films of approximately 40 nm in thickness and density of 1.7 g/cm3 were deposited. The a-C:H films reduce the roughness and coefficient of friction while improving the tribomechanical response compared with bare metals for Ti, SS and Nb plates. The very good tribomechanical properties of a-C:H make it a promising candidate material for protective coating on metallic implants.
Collapse
Affiliation(s)
- Konstantinos Kapnisis
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Marios Constantinou
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,2 Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Lemesos, Cyprus
| | - Maria Kyrkou
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Petros Nikolaou
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,2 Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Lemesos, Cyprus
| | - Andreas Anayiotos
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Georgios Constantinides
- 1 Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,2 Research Unit for Nanostructured Materials Systems, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
7
|
Growth and potential damage of human bone-derived cells cultured on fresh and aged C60/Ti films. PLoS One 2015; 10:e0123680. [PMID: 25875338 PMCID: PMC4398559 DOI: 10.1371/journal.pone.0123680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 03/06/2015] [Indexed: 01/07/2023] Open
Abstract
Thin films of binary C60/Ti composites, with various concentrations of Ti ranging from ~ 25% to ~ 70%, were deposited on microscopic glass coverslips and were tested for their potential use in bone tissue engineering as substrates for the adhesion and growth of bone cells. The novelty of this approach lies in the combination of Ti atoms (i.e., widely used biocompatible material for the construction of stomatological and orthopedic implants) with atoms of fullerene C60, which can act as very efficient radical scavengers. However, fullerenes and their derivatives are able to generate harmful reactive oxygen species and to have cytotoxic effects. In order to stabilize C60 molecules and to prevent their possible cytotoxic effects, deposition in the compact form of Ti/C60 composites (with various Ti concentrations) was chosen. The reactivity of C60/Ti composites may change in time due to the physicochemical changes of molecules in an air atmosphere. In this study, we therefore tested the dependence between the age of C60/Ti films (from one week to one year) and the adhesion, morphology, proliferation, viability, metabolic activity and potential DNA damage to human osteosarcoma cells (lines MG-63 and U-2 OS). After 7 days of cultivation, we did not observe any negative influence of fresh or aged C60/Ti layers on cell behavior, including the DNA damage response. The presence of Ti atoms resulted in improved properties of the C60 layers, which became more suitable for cell cultivation.
Collapse
|