1
|
Ching K, Sagasti A. Caliber of Rohon-Beard Touch-Sensory Axons Is Dynamic In Vivo. eNeuro 2025; 12:ENEURO.0043-25.2025. [PMID: 40341239 DOI: 10.1523/eneuro.0043-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025] Open
Abstract
Cell shape is crucial to cell function, particularly in neurons. The cross-sectional diameter, also known as caliber, of axons and dendrites is an important parameter of neuron shape, best appreciated for its influence on the speed of action potential propagation. Many studies of axon caliber focus on cell-wide regulation and assume that caliber is static. Here, we have characterized local variation and dynamics of axon caliber in vivo using the peripheral axons of zebrafish touch-sensing neurons at embryonic stages, prior to sex determination. To obtain absolute measurements of caliber in vivo, we paired sparse membrane labeling with super-resolution microscopy of neurons in live fish. We observed that axon segments had varicose or "pearled" morphologies and thus vary in caliber along their length, consistent with reports from mammalian systems. Sister axon segments originating from the most proximal branch point in the axon arbor had average calibers that were uncorrelated with each other. Axon caliber also tapered across the branch point. Varicosities and caliber, overall, were dynamic on the timescale of minutes, and dynamicity changed over the course of development. By measuring the caliber of axons adjacent to dividing epithelial cells, we found that skin cell division is one aspect of the cellular microenvironment that may drive local differences and dynamics in axon caliber. Our findings support the possibility that spatial and temporal variation in axon caliber could significantly influence neuronal physiology.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095
| | - Alvaro Sagasti
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
2
|
Ching K, Sagasti A. Caliber of zebrafish touch-sensory axons is dynamic in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.04.626901. [PMID: 39713467 PMCID: PMC11661087 DOI: 10.1101/2024.12.04.626901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cell shape is crucial to cell function, particularly in neurons. The cross-sectional diameter, also known as caliber, of axons and dendrites is an important parameter of neuron shape, best appreciated for its influence on the speed of action potential propagation. Many studies of axon caliber focus on cell-wide regulation and assume that caliber is static. Here, we have characterized local variation and dynamics of axon caliber in vivo using the peripheral axons of zebrafish touch-sensing neurons at embryonic stages, prior to sex determination. To obtain absolute measurements of caliber in vivo, we paired sparse membrane labeling with super-resolution microscopy of neurons in live fish. We observed that axon segments had varicose or "pearled" morphologies, and thus vary in caliber along their length, consistent with reports from mammalian systems. Sister axon segments originating from the most proximal branch point in the axon arbor had average calibers that were uncorrelated with each other. Axon caliber also tapered across the branch point. Varicosities and caliber, overall, were dynamic on the timescale of minutes, and dynamicity changed over the course of development. By measuring the caliber of axons adjacent to dividing epithelial cells, we found that skin cell division is one aspect of the cellular microenvironment that may drive local differences and dynamics in axon caliber. Our findings support the possibility that spatial and temporal variation in axon caliber could significantly influence neuronal physiology.
Collapse
Affiliation(s)
- Kaitlin Ching
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Alvaro Sagasti
- Department of Cell, Molecular, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
3
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
4
|
Tsolakidis S, Alharbi Z, Rennekampff HO, Schmidhammer MR, Schmidhammer R, Rosenauer R. "Out of Touch"-Recovering Sensibility after Burn Injury: A Review of the Literature. EUROPEAN BURN JOURNAL 2022; 3:370-376. [PMID: 39600007 PMCID: PMC11575383 DOI: 10.3390/ebj3020032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/14/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2024]
Abstract
BACKGROUND Full-thickness burn injuries (FTBI) not only lead to a significant burden in multiple ways, including social life and self-esteem, but have also a tremendous impact on environmental interaction by reducing sensibility in manifold ways. On these grounds, possible ways and solutions to recover sensibility in burn wounds are essentials and should not be overlooked. METHODS A review of experimental, clinical studies and the related literature was performed with the aim to highlight post-burn nerve regeneration and discover ways for sensory re-integration to complement the therapeutic concept. RESULTS In human burn injuries, it has been hypothesized that grafted cells, partly multipotent stem cells, could be additionally responsible for nerve regeneration in burn wound areas. In addition, burn eschar excision, performed within a short post-burn time frame, can reduce or even avoid long-term nerve damage by reducing post-burn toxic mediator release. Various animal studies could demonstrate sensory reinnervation of different qualities in burn wounds. Post-burn scar tissue prevents, or at least decelerates, nerve reinnervation, but could be reduced by targeted mediators. CONCLUSION Sensory loss is present in skin grafted areas following full-thickness burn-wound excision, thereby leading to a reduction in quality of life. In addition, various mediators might reduce or avoid nerve damage and should be considered at an early stage as part of a holistic burn-patient therapeutic approach. In addition, supportive multifaceted physical therapy strategies are essential.
Collapse
Affiliation(s)
- Savas Tsolakidis
- Austrian Cluster of Tissue Regeneration, Research Centre for Traumatology of the Austrian Workers Compensation Board (AUVA), Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200 Vienna, Austria; (R.S.); (R.R.)
- Millesi Center for Surgery of Peripheral Nerves, Vienna Private Clinic, Pelikangasse 15, 1090 Vienna, Austria
| | - Ziyad Alharbi
- Plastic Surgery and Burn Unit, Dr. Soliman Fakeeh Hospital, Jeddah 23323, Saudi Arabia;
| | - Hans Oliver Rennekampff
- Klinik für Plastische Chirurgie, Hand-und Verbrennungschirurgie, Rhein Maas Klinikum, Mauerfeldchen 25, 52146 Wuerselen, Germany;
| | | | - Robert Schmidhammer
- Austrian Cluster of Tissue Regeneration, Research Centre for Traumatology of the Austrian Workers Compensation Board (AUVA), Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200 Vienna, Austria; (R.S.); (R.R.)
- Millesi Center for Surgery of Peripheral Nerves, Vienna Private Clinic, Pelikangasse 15, 1090 Vienna, Austria
| | - Rudolf Rosenauer
- Austrian Cluster of Tissue Regeneration, Research Centre for Traumatology of the Austrian Workers Compensation Board (AUVA), Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200 Vienna, Austria; (R.S.); (R.R.)
- Millesi Center for Surgery of Peripheral Nerves, Vienna Private Clinic, Pelikangasse 15, 1090 Vienna, Austria
- Trauma Hospital Lorenz Boehler of the Austrian Workers’ Compensation Board (AUVA), Donaueschingenstrasse 13, 1200 Vienna, Austria
| |
Collapse
|
5
|
Hirano M, Huang Y, Vela Jarquin D, De la Garza Hernández RL, Jodat YA, Luna Cerón E, García-Rivera LE, Shin SR. 3D bioprinted human iPSC-derived somatosensory constructs with functional and highly purified sensory neuron networks. Biofabrication 2021; 13. [PMID: 33962404 DOI: 10.1088/1758-5090/abff11] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Engineering three-dimensional (3D) sensible tissue constructs, along with the complex microarchitecture wiring of the sensory nervous system, has been an ongoing challenge in the tissue engineering field. By combining 3D bioprinting and human pluripotent stem cell (hPSC) technologies, sensible tissue constructs could be engineered in a rapid, precise, and controllable manner to replicate 3D microarchitectures and mechanosensory functionalities of the native sensory tissue (e.g. response to external stimuli). Here, we introduce a biofabrication approach to create complex 3D microarchitecture wirings. We develop an hPSC-sensory neuron (SN) laden bioink using highly purified and functional SN populations to 3D bioprint microarchitecture wirings that demonstrate responsiveness to warm/cold sense-inducing chemicals and mechanical stress. Specifically, we tailor a conventional differentiation strategy to our purification method by utilizing p75 cell surface marker and DAPT treatment along with neuronal growth factors in order to selectively differentiate neural crest cells into SNs. To create spatial resolution in 3D architectures and grow SNs in custom patterns and directions, an induced pluripotent stem cell (iPSC)-SN-laden gelatin bioink was printed on laminin-coated substrates using extrusion-based bioprinting technique. Then the printed constructs were covered with a collagen matrix that guided SNs growing in the printed micropattern. Using a sacrificial bioprinting technique, the iPSC-SNs were seeded into the hollow microchannels created by sacrificial gelatin ink printed in the gelatin methacryloyl supporting bath, thereby demonstrating controllability over axon guidance in curved lines up to several tens of centimeters in length on 2D substrates and in straight microchannels in 3D matrices. Therefore, this biofabrication approach could be amenable to incorporate sensible SN networks into the engineered skin equivalents, regenerative skin implants, and augmented somatosensory neuro-prosthetics that have the potential to regenerate sensible functions by connecting host neuron systems in injured areas.
Collapse
Affiliation(s)
- Minoru Hirano
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Future Vehicle Research Department, Toyota Research Institute North America, Toyota Motor North America Inc., 1555 Woodridge Ave, Ann Arbor, MI 48105, United States of America
| | - Yike Huang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 100730, People's Republic of China
| | - Daniel Vela Jarquin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Ejidos de Huipulco, Tlalpan, Ciudad de México, CDMX 14380, Mexico
| | - Rosakaren Ludivina De la Garza Hernández
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849 Monterrey, NL, Mexico
| | - Yasamin A Jodat
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America
| | - Eder Luna Cerón
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Ejidos de Huipulco, Tlalpan, Ciudad de México, CDMX 14380, Mexico
| | - Luis Enrique García-Rivera
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America.,Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Ejidos de Huipulco, Tlalpan, Ciudad de México, CDMX 14380, Mexico
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, MA 02139, United States of America
| |
Collapse
|
6
|
Holt E, Stanton-Turcotte D, Iulianella A. Development of the Vertebrate Trunk Sensory System: Origins, Specification, Axon Guidance, and Central Connectivity. Neuroscience 2021; 458:229-243. [PMID: 33460728 DOI: 10.1016/j.neuroscience.2020.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
Crucial to an animal's movement through their environment and to the maintenance of their homeostatic physiology is the integration of sensory information. This is achieved by axons communicating from organs, muscle spindles and skin that connect to the sensory ganglia composing the peripheral nervous system (PNS), enabling organisms to collect an ever-constant flow of sensations and relay it to the spinal cord. The sensory system carries a wide spectrum of sensory modalities - from sharp pain to cool refreshing touch - traveling from the periphery to the spinal cord via the dorsal root ganglia (DRG). This review covers the origins and development of the DRG and the cells that populate it, and focuses on how sensory connectivity to the spinal cord is achieved by the diverse developmental and molecular processes that control axon guidance in the trunk sensory system. We also describe convergences and differences in sensory neuron formation among different vertebrate species to gain insight into underlying developmental mechanisms.
Collapse
Affiliation(s)
- Emily Holt
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Danielle Stanton-Turcotte
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada.
| |
Collapse
|
7
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
8
|
Yang WK, Chien CT. Beyond being innervated: the epidermis actively shapes sensory dendritic patterning. Open Biol 2020; 9:180257. [PMID: 30914004 PMCID: PMC6451362 DOI: 10.1098/rsob.180257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sensing environmental cues requires well-built neuronal circuits linked to the body surface. Sensory neurons generate dendrites to innervate surface epithelium, thereby making it the largest sensory organ in the body. Previous studies have illustrated that neuronal type, physiological function and branching patterns are determined by intrinsic factors. Perhaps for effective sensation or protection, sensory dendrites bind to or are surrounded by the substrate epidermis. Recent studies have shed light on the mechanisms by which dendrites interact with their substrates. These interactions suggest that substrates can regulate dendrite guidance, arborization and degeneration. In this review, we focus on recent studies of Drosophila and Caenorhabditis elegans that demonstrate how epidermal cells can regulate dendrites in several aspects.
Collapse
Affiliation(s)
- Wei-Kang Yang
- Institute of Molecular Biology, Academia Sinica , Taipei 115 , Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
9
|
Freeman L, Wu OC, Sweet J, Cohen M, Smith GA, Miller JP. Facial Sensory Restoration After Trigeminal Sensory Rhizotomy by Collateral Sprouting From the Occipital Nerves. Neurosurgery 2019; 86:E436-E441. [DOI: 10.1093/neuros/nyz306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/18/2019] [Indexed: 01/14/2023] Open
Abstract
Abstract
BACKGROUND AND IMPORTANCE
Lesioning procedures are effective for trigeminal neuralgia (TN), but late pain recurrence associated with sensory recovery is common. We report a case of recurrence of type 1A TN and recovery of facial sensory function after trigeminal rhizotomy associated with collateral sprouting from upper cervical spinal nerves.
CLINICAL PRESENTATION
A 41-yr-old woman presented 2 yr after open left trigeminal sensory rhizotomy for TN with pain-free anesthesia in the entire left trigeminal nerve distribution. Over 18 mo, she developed gradual recovery of facial sensation migrating anteromedially from the occipital region, eventually extending to the midpupillary line across the distribution of all trigeminal nerve branches. She reported recurrence of her triggered lancinating TN pain isolated to the area of recovered sensation with no pain in anesthetic areas. Nerve ultrasound demonstrated enlargement of ipsilateral greater and lesser occipital nerves, and occipital nerve block restored facial anesthesia and resolved her pain, indicating that recovered facial sensation was provided exclusively by the upper cervical spinal nerves. She underwent C2/C3 ganglionectomy, and ganglia were observed to be hypertrophic. Postoperatively, trigeminal anesthesia was restored with complete resolution of pain that persisted at 12-mo follow-up.
CONCLUSION
This is the first documented case of a spinal nerve innervating a cranial dermatome by collateral sprouting after cranial nerve injury. The fact that typical TN pain can occur even when sensation is mediated by spinal nerves suggests that the disorder can be centrally mediated and late failure after lesioning procedures may result from maladaptive reinnervation.
Collapse
Affiliation(s)
- Lindsey Freeman
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Osmond C Wu
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jennifer Sweet
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mark Cohen
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Gabriel A Smith
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jonathan P Miller
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
10
|
McDermott LA, Weir GA, Themistocleous AC, Segerdahl AR, Blesneac I, Baskozos G, Clark AJ, Millar V, Peck LJ, Ebner D, Tracey I, Serra J, Bennett DL. Defining the Functional Role of Na V1.7 in Human Nociception. Neuron 2019; 101:905-919.e8. [PMID: 30795902 PMCID: PMC6424805 DOI: 10.1016/j.neuron.2019.01.047] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
Abstract
Loss-of-function mutations in NaV1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how NaV1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous NaV1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that NaV1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some NaV1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lucy A McDermott
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Greg A Weir
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | - Andrew R Segerdahl
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Iulia Blesneac
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Val Millar
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Liam J Peck
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Jordi Serra
- Department of Clinical Neurophysiology, King's College Hospital, London SE5 9RS, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
11
|
Low IIC, Williams CR, Chong MK, McLachlan IG, Wierbowski BM, Kolotuev I, Heiman MG. Morphogenesis of neurons and glia within an epithelium. Development 2019; 146:dev171124. [PMID: 30683663 PMCID: PMC6398450 DOI: 10.1242/dev.171124] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
To sense the outside world, some neurons protrude across epithelia, the cellular barriers that line every surface of our bodies. To study the morphogenesis of such neurons, we examined the C. elegans amphid, in which dendrites protrude through a glial channel at the nose. During development, amphid dendrites extend by attaching to the nose via DYF-7, a type of protein typically found in epithelial apical ECM. Here, we show that amphid neurons and glia exhibit epithelial properties, including tight junctions and apical-basal polarity, and develop in a manner resembling other epithelia. We find that DYF-7 is a fibril-forming apical ECM component that promotes formation of the tube-shaped glial channel, reminiscent of roles for apical ECM in other narrow epithelial tubes. We also identify a requirement for FRM-2, a homolog of EPBL15/moe/Yurt that promotes epithelial integrity in other systems. Finally, we show that other environmentally exposed neurons share a requirement for DYF-7. Together, our results suggest that these neurons and glia can be viewed as part of an epithelium continuous with the skin, and are shaped by mechanisms shared with other epithelia.
Collapse
Affiliation(s)
- Isabel I C Low
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Claire R Williams
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Megan K Chong
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Ian G McLachlan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Bradley M Wierbowski
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Université de Rennes 1, Plateforme microscopie électronique, 35043 Rennes, France
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Mazzochette EA, Nekimken AL, Loizeau F, Whitworth J, Huynh B, Goodman MB, Pruitt BL. The tactile receptive fields of freely moving Caenorhabditis elegans nematodes. Integr Biol (Camb) 2018; 10:450-463. [PMID: 30027970 PMCID: PMC6168290 DOI: 10.1039/c8ib00045j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sensory neurons embedded in skin are responsible for the sense of touch. In humans and other mammals, touch sensation depends on thousands of diverse somatosensory neurons. By contrast, Caenorhabditis elegans nematodes have six gentle touch receptor neurons linked to simple behaviors. The classical touch assay uses an eyebrow hair to stimulate freely moving C. elegans, evoking evasive behavioral responses. This assay has led to the discovery of genes required for touch sensation, but does not provide control over stimulus strength or position. Here, we present an integrated system for performing automated, quantitative touch assays that circumvents these limitations and incorporates automated measurements of behavioral responses. The Highly Automated Worm Kicker (HAWK) unites a microfabricated silicon force sensor holding a glass bead forming the contact surface and video analysis with real-time force and position control. Using this system, we stimulated animals along the anterior-posterior axis and compared responses in wild-type and spc-1(dn) transgenic animals, which have a touch defect due to expression of a dominant-negative α-spectrin protein fragment. As expected from prior studies, delivering large stimuli anterior and posterior to the mid-point of the body evoked a reversal and a speed-up, respectively. The probability of evoking a response of either kind depended on stimulus strength and location; once initiated, the magnitude and quality of both reversal and speed-up behavioral responses were uncorrelated with stimulus location, strength, or the absence or presence of the spc-1(dn) transgene. Wild-type animals failed to respond when the stimulus was applied near the mid-point. These results show that stimulus strength and location govern the activation of a characteristic motor program and that the C. elegans body surface consists of two receptive fields separated by a gap.
Collapse
Affiliation(s)
- E A Mazzochette
- Department of Electrical Engineering, Stanford University, 94305, USA
| | - A L Nekimken
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA
| | - F Loizeau
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - J Whitworth
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - B Huynh
- Department of Mechanical Engineering, Stanford University, 94305, USA.
| | - M B Goodman
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA
| | - B L Pruitt
- Department of Mechanical Engineering, Stanford University, 94305, USA. and Department of Molecular and Cellular Physiology, Stanford University, 94305, USA and Department of Bioengineering, Stanford University, 94305, USA and Department of Mechanical Engineering, University of California, Santa Barbara, 93106, USA.
| |
Collapse
|
13
|
Fish Scales Dictate the Pattern of Adult Skin Innervation and Vascularization. Dev Cell 2018; 46:344-359.e4. [PMID: 30032992 DOI: 10.1016/j.devcel.2018.06.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 05/27/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022]
Abstract
As animals mature from embryonic to adult stages, the skin grows and acquires specialized appendages, like hairs, feathers, and scales. How cutaneous blood vessels and sensory axons adapt to these dramatic changes is poorly understood. By characterizing skin maturation in zebrafish, we discovered that sensory axons are delivered to the adult epidermis in organized nerves patterned by features in bony scales. These nerves associate with blood vessels and osteoblasts above scales. Osteoblasts create paths in scales that independently guide nerves and blood vessels during both development and regeneration. By preventing scale regeneration and examining mutants lacking scales, we found that scales recruit, organize, and polarize axons and blood vessels to evenly distribute them in the skin. These studies uncover mechanisms for achieving comprehensive innervation and vascularization of the adult skin and suggest that scales coordinate a metamorphosis-like transformation of the skin with sensory axon and vascular remodeling.
Collapse
|
14
|
Vahedi-Hunter TA, Estep JA, Rosette KA, Rutlin ML, Wright KM, Riccomagno MM. Cas Adaptor Proteins Coordinate Sensory Axon Fasciculation. Sci Rep 2018; 8:5996. [PMID: 29662228 PMCID: PMC5902548 DOI: 10.1038/s41598-018-24261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
Development of complex neural circuits like the peripheral somatosensory system requires intricate mechanisms to ensure axons make proper connections. While much is known about ligand-receptor pairs required for dorsal root ganglion (DRG) axon guidance, very little is known about the cytoplasmic effectors that mediate cellular responses triggered by these guidance cues. Here we show that members of the Cas family of cytoplasmic signaling adaptors are highly phosphorylated in central projections of the DRG as they enter the spinal cord. Furthermore, we provide genetic evidence that Cas proteins regulate fasciculation of DRG sensory projections. These data establish an evolutionarily conserved requirement for Cas adaptor proteins during peripheral nervous system axon pathfinding. They also provide insight into the interplay between axonal fasciculation and adhesion to the substrate.
Collapse
Affiliation(s)
- Tyler A Vahedi-Hunter
- Neuroscience Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jason A Estep
- Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kylee A Rosette
- Vollum Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Michael L Rutlin
- Department of Biochemistry and Molecular Biophysics, Columbia College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Martin M Riccomagno
- Neuroscience Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA. .,Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
16
|
Anand S, Desai V, Alsmadi N, Kanneganti A, Nguyen DHT, Tran M, Patil L, Vasudevan S, Xu C, Hong Y, Cheng J, Keefer E, Romero-Ortega MI. Asymmetric Sensory-Motor Regeneration of Transected Peripheral Nerves Using Molecular Guidance Cues. Sci Rep 2017; 7:14323. [PMID: 29085079 PMCID: PMC5662603 DOI: 10.1038/s41598-017-14331-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022] Open
Abstract
Neural interfaces are designed to decode motor intent and evoke sensory precepts in amputees. In peripheral nerves, recording movement intent is challenging because motor axons are only a small fraction compared to sensory fibers and are heterogeneously mixed particularly at proximal levels. We previously reported that pain and myelinated axons regenerating through a Y-shaped nerve guide with sealed ends, can be modulated by luminar release of nerve growth factor (NGF) and neurotrophin-3 (NT-3), respectively. Here, we evaluate the differential potency of NGF, glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), pleiotrophin (PTN), and NT-3 in asymmetrically guiding the regeneration of sensory and motor neurons. We report that, in the absence of distal target organs, molecular guidance cues can mediate the growth of electrically conductive fascicles with normal microanatomy. Compared to Y-tube compartments with bovine serum albumin (BSA), GDNF and NGF increased the motor and sensory axon content, respectively. In addition, the sensory to motor ratio was significantly increased by PTN (12.7:1) when compared to a BDNF + GDNF choice. The differential content of motor and sensory axons modulated by selective guidance cues may provide a strategy to better define axon types in peripheral nerve interfaces.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Vidhi Desai
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Nesreen Alsmadi
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Aswini Kanneganti
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Dianna Huyen-Tram Nguyen
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Martin Tran
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Lokesh Patil
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Srikanth Vasudevan
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76010, USA
| | - Jonathan Cheng
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Edward Keefer
- Nerves Incorporated, P.O. Box 141295, Dallas, TX 75214, USA
| | - Mario I Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
17
|
Horne-Badovinac S. Fat-like cadherins in cell migration-leading from both the front and the back. Curr Opin Cell Biol 2017; 48:26-32. [PMID: 28551508 DOI: 10.1016/j.ceb.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/15/2023]
Abstract
When cells migrate through the body, their motility is continually influenced by interactions with other cells. The Fat-like cadherins are cell-cell signaling proteins that promote migration in multiple cell types. Recent studies suggest, however, that Fat-like cadherins influence motility differently in mammals versus Drosophila, with the cadherin acting at the leading edge of mammalian cells and the trailing edge of Drosophila cells. As opposed to this being a difference between organisms, it is more likely that the Fat-like cadherins are highly versatile proteins that can interact with the migration machinery in multiple ways. Here, I review what is known about how Fat-like cadherins promote migration, and then explore where conserved features may be found between the mammalian and Drosophila models.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Calpain-Mediated Proteolysis of Talin and FAK Regulates Adhesion Dynamics Necessary for Axon Guidance. J Neurosci 2017; 37:1568-1580. [PMID: 28069919 DOI: 10.1523/jneurosci.2769-16.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 01/05/2023] Open
Abstract
Guidance of axons to their proper synaptic target sites requires spatially and temporally precise modulation of biochemical signals within growth cones. Ionic calcium (Ca2+) is an essential signal for axon guidance that mediates opposing effects on growth cone motility. The diverse effects of Ca2+ arise from the precise localization of Ca2+ signals into microdomains containing specific Ca2+ effectors. For example, differences in the mechanical and chemical composition of the underlying substrata elicit local Ca2+ signals within growth cone filopodia that regulate axon guidance through activation of the protease calpain. However, how calpain regulates growth cone motility remains unclear. Here, we identify the adhesion proteins talin and focal adhesion kinase (FAK) as proteolytic targets of calpain in Xenopus laevis spinal cord neurons both in vivo and in vitro Inhibition of calpain increases the localization of endogenous adhesion signaling to growth cone filopodia. Using live cell microscopy and specific calpain-resistant point-mutants of talin (L432G) and FAK (V744G), we find that calpain inhibits paxillin-based adhesion assembly through cleavage of talin and FAK, and adhesion disassembly through cleavage of FAK. Blocking calpain cleavage of talin and FAK inhibits repulsive turning from focal uncaging of Ca2+ within filopodia. In addition, blocking calpain cleavage of talin and FAK in vivo promotes Rohon-Beard peripheral axon extension into the skin. These data demonstrate that filopodial Ca2+ signals regulate axon outgrowth and guidance through calpain regulation of adhesion dynamics through specific cleavage of talin and FAK.SIGNIFICANCE STATEMENT The proper formation of neuronal networks requires accurate guidance of axons and dendrites during development by motile structures known as growth cones. Understanding the intracellular signaling mechanisms that govern growth cone motility will clarify how the nervous system develops and regenerates, and may identify areas of therapeutic intervention in disease or injury. One important signal that controls growth cones is that of local Ca2+ transients, which control the rate and direction of axon outgrowth. We demonstrate here that Ca2+-dependent inhibition axon outgrowth and guidance is mediated by calpain proteolysis of the adhesion proteins talin and focal adhesion kinase. Our findings provide mechanistic insight into Ca2+/calpain regulation of growth cone motility and axon guidance during neuronal development.
Collapse
|
19
|
Wu W. Cell adhesion molecules take you home: cell adhesion in axon guidance and neural circuit assembly. Cell Adh Migr 2013; 7:377-8. [PMID: 23934024 PMCID: PMC7098692 DOI: 10.4161/cam.25277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Wei Wu
- Departments of Developmental Biology and Pathology; Stanford University School of Medicine; Stanford, CA USA
| |
Collapse
|