1
|
Yang P, Liu X, Lyu J, Feng Q, Ding Y, Zhong S, Liu P, Liang Y, Liu C, Huang L, Zhao P, Li Q, Ma K, Fan S, Zhang X. Down-regulation of TAGLN2 associated with the development of preeclampsia by effecting the Rap1 signaling pathway. Placenta 2025; 159:20-31. [PMID: 39602835 DOI: 10.1016/j.placenta.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Preeclampsia (PE) poses significant global challenges to pregnancy health, being a leading cause of maternal and perinatal morbidity and mortality. Unfortunately, effective treatment options remain limited, necessitating the urgent development of novel therapeutic strategies. This study is to investigate down-regulation of Transgelin-2 (TAGLN2) contributes to the development of PE through suppression of the Rap1 signaling pathway. METHODS Placentas from PE patients were collected for a transcriptome analysis. Down-regulation experiments of TAGLN2 were performed in mouse and HTR-8/SVneo cells to generate PE models. The mechanism by which down-regulation of TAGLN2 induces PE was explored based on these PE model through transcriptome and proteome analysis and molecular tests. RESULTS Our findings revealed that the expression levels of Rap1A was significantly reduced in the placenta of PE patients. The expression level of Rap1A in the placental tissue of sh_Tagln2 PE model mice is down-regulated. In addition, TAGLN2 down-regulation impede the proliferation and migration of HTR8/SVneo cells and lead to the decreased expression of Rap1A. Meanwhile, Rap1A down-regulation impede both the proliferation and migration of HTR8/SVneo cells. Both transcriptomic and proteomic levels of sh-TG2 HTR8/SVneo cells demonstrated Rap1 signaling pathway and related key genes was inhibited after TAGLN2 down-regulation. CONCLUSION Our results confirm that down-regulation of TAGLN2 in HTR-8/SVneo cells leads to the decreased Rap1A expression and suppresses trophoblast cell proliferation and migration by inhibiting Rap1 signaling pathway. Meanwhile, Rap1A down-regulation impede both the proliferation and migration of HTR8/SVneo cells. These findings concluded that down-regulation of TAGLN2 may be implicated in the development of preeclampsia through its effect on the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Ping Yang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Xinyang Liu
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Jinli Lyu
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Qiaoli Feng
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shilin Zhong
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Ping Liu
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Chunfeng Liu
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Pingyue Zhao
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China; Peking University Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, Guangdong, China
| | - Qing Li
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Kaidong Ma
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shangrong Fan
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China; Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China.
| | - Xiaowei Zhang
- Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China; Department of Obstetrics and Gynaecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China.
| |
Collapse
|
2
|
Hosokawa K, Ishimaru H, Watanabe T, Fujimuro M. Pax5 mediates the transcriptional activation of the CD81 gene. Sci Rep 2021; 11:22919. [PMID: 34824296 PMCID: PMC8616915 DOI: 10.1038/s41598-021-02082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
CD81 is an integral membrane protein of the tetraspanin family and forms complexes with a variety of other cell surface membrane proteins. CD81 is involved in cell migration and B cell activation. However, the mechanism of the transcriptional regulation of the CD81 gene remains unclear. Here, we revealed that CD81 transcriptional activation was required for binding of the transcription factor Pax5 at the Pax5-binding sequence (-54)GCGGGAC(-48) located upstream of the transcriptional start site (TSS) of the CD81 gene. The reporter assay showed that the DNA sequence between - 130 and - 39 bp upstream of the TSS of the CD81 gene had promoter activity for CD81 transcription. The DNA sequence between - 130 and - 39 bp upstream of TSS of CD81 harbors two potential Pax5-binding sequences (-87)GCGTGAG(-81) and (-54)GCGGGAC(-48). Reporter, electrophoresis mobility shift, and chromatin immunoprecipitation (ChIP) assays disclosed that Pax5 bound to the (-54)GCGGGAC(-48) in the promoter region of the CD81 gene in order to activate CD81 transcription. Pax5 overexpression increased the expression level of CD81 protein, while the Pax5-knockdown by shRNA decreased CD81 expression. Moreover, we found that the expression level of CD81 was positively correlated with Pax5 expression in human tumor cell lines. Because CD81 was reported to be involved in cell migration, we evaluated the effects of Pax5 overexpression by wound healing and transwell assays. The data showed that overexpression of either Pax5 or CD81 promoted the epithelial cell migration. Thus, our findings provide insights into the transcriptional mechanism of the CD81 gene through transcription factor Pax5.
Collapse
Affiliation(s)
- Kohei Hosokawa
- grid.411212.50000 0000 9446 3559Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto-shi, Kyoto, 607-8412 Japan
| | - Hanako Ishimaru
- grid.411212.50000 0000 9446 3559Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto-shi, Kyoto, 607-8412 Japan
| | - Tadashi Watanabe
- grid.411212.50000 0000 9446 3559Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto-shi, Kyoto, 607-8412 Japan ,grid.267625.20000 0001 0685 5104Present Address: Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto-shi, Kyoto, 607-8412, Japan.
| |
Collapse
|
3
|
Chen X, Shibata AC, Hendi A, Kurashina M, Fortes E, Weilinger NL, MacVicar BA, Murakoshi H, Mizumoto K. Rap2 and TNIK control Plexin-dependent tiled synaptic innervation in C. elegans. eLife 2018; 7:38801. [PMID: 30063210 PMCID: PMC6067881 DOI: 10.7554/elife.38801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
During development, neurons form synapses with their fate-determined targets. While we begin to elucidate the mechanisms by which extracellular ligand-receptor interactions enhance synapse specificity by inhibiting synaptogenesis, our knowledge about their intracellular mechanisms remains limited. Here we show that Rap2 GTPase (rap-2) and its effector, TNIK (mig-15), act genetically downstream of Plexin (plx-1) to restrict presynaptic assembly and to form tiled synaptic innervation in C. elegans. Both constitutively GTP- and GDP-forms of rap-2 mutants exhibit synaptic tiling defects as plx-1 mutants, suggesting that cycling of the RAP-2 nucleotide state is critical for synapse inhibition. Consistently, PLX-1 suppresses local RAP-2 activity. Excessive ectopic synapse formation in mig-15 mutants causes a severe synaptic tiling defect. Conversely, overexpression of mig-15 strongly inhibited synapse formation, suggesting that mig-15 is a negative regulator of synapse formation. These results reveal that subcellular regulation of small GTPase activity by Plexin shapes proper synapse patterning in vivo. Genes do more than just direct the color of our hair or eyes. They produce proteins that are involved in almost every process in the body. In humans, the majority of active genes can be found in the brain, where they help it to develop and work properly – effectively controlling how we move and behave. The brain’s functional units, the nerve cells or neurons, communicate with each other by releasing messenger molecules in the gap between them, the synapse. These molecules are then picked up from specific receptor proteins of the receiving neuron. In the nervous system, neurons only form synapses with the cells they need to connect with, even though they are surrounded by many more cells. This implies that they use specific mechanisms to stop neurons from forming synapses with incorrect target cells. This is important, because if too many synapses were present or if synapses formed with incorrect target cells, it would compromise the information flow in the nervous system. This would ultimately lead to various neurological conditions, including Autism Spectrum Disorder. In 2013, researchers found that in the roundworm Caenorhabditis elegans, a receptor protein called Plexin, is located at the surface of the neurons and can inhibit the formation of nearby synapses. Now, Chen et al. – including one author involved in the previous research – wanted to find out what genes Plexin manipulates when it stops synapses from growing. Knowing what each of those genes does can help us understand how neurons can inhibit synapses. The results revealed that Plexin appears to regulate two genes, Rap2 and TNIK. Plexin reduced the activity of Rap2 in the neuron that released the messenger, which hindered the formation of synapses. The gene TNIK and its protein on the other hand, have the ability to modify other proteins and could so inhibit the growth of synapses. When TNIK was experimentally removed, the number of synapses increased, but when its activity was increased, the number of synapses was strongly reduced. These findings could help scientists understand how mutations in Rap2 or TNIK can lead to various neurological conditions. A next step will be to test if these genes also affect the formation of synapses in other species such as mice, which have a more complex nervous system that is structurally and functionally more similar to that of humans.
Collapse
Affiliation(s)
- Xi Chen
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Akihiro Ce Shibata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ardalan Hendi
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Ethan Fortes
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | | | - Brian A MacVicar
- Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Priego N, Arechederra M, Sequera C, Bragado P, Vázquez-Carballo A, Gutiérrez-Uzquiza Á, Martín-Granado V, Ventura JJ, Kazanietz MG, Guerrero C, Porras A. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38α activation, while it impairs tumor growth through p38α-independent mechanisms. Oncotarget 2018; 7:45060-45078. [PMID: 27286263 PMCID: PMC5216706 DOI: 10.18632/oncotarget.9911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
C3G, a Guanine nucleotide Exchange Factor (GEF) for Rap1 and R-Ras, has been shown to play important roles in development and cancer. Previous studies determined that C3G regulates cell death through down-regulation of p38α MAPK activity. Here, we found that C3G knock-down in MEFs and HCT116 cells promotes migration and invasion through Rap1-mediated p38α hyper-activation. These effects of C3G were inhibited by Rap1 knock-down or inactivation. The enhanced migration observed in C3G depleted HCT116 cells was associated with reduction in E-cadherin expression, internalization of ZO-1, actin cytoskeleton reorganization and decreased adhesion. We also found that matrix metalloproteases MMP2 and MMP9 are involved in the pro-invasive effect of C3G down-regulation. Additionally, our studies revealed that both C3G and p38α collaborate to promote growth of HCT116 cells in vitro and in vivo, possibly by enhancing cell survival. In fact, knocking-down C3G or p38α individually or together promoted cell death in vitro, although only the double C3G-p38α silencing was able to increase cell death within tumors. Notably, we found that the pro-tumorigenic function of C3G does not depend on p38α or Rap1 activation. Altogether, our studies uncover novel mechanisms by which C3G controls key aspects of tumorigenesis.
Collapse
Affiliation(s)
- Neibla Priego
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María Arechederra
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Celia Sequera
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Paloma Bragado
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Vázquez-Carballo
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Álvaro Gutiérrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Present address: Department of Cancer Biology, Biomedical Research Building II/III, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Víctor Martín-Granado
- Centro de Investigación del Cáncer, IBMCC, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), Salamanca, Spain
| | - Juan José Ventura
- Translational Cell and Tissue Research, Department of Imaging and Pathology, Leuven University, Leuven, Belgium
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Guerrero
- Centro de Investigación del Cáncer, IBMCC, Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Instituto de Investigaciones Biomédicas de Salamanca (IBSAL), Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
5
|
Wang Z, Wang J, Yang Y, Hao B, Wang R, Li Y, Wu Q. Loss of has-miR-337-3p expression is associated with lymph node metastasis of human gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:76. [PMID: 24422944 PMCID: PMC3854519 DOI: 10.1186/1756-9966-32-76] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
Abstract
Background Metastasis is the major cause of cancer-related death in patients with gastric cancer, and aberrant expression of various microRNAs (miRNAs) is associated with cancer metastasis. Methods Profiling of differentially expressed miRNAs was performed in three cases of primary gastric cancer and the corresponding metastatic lymph node tissues. Then, the five most altered miRNAs were further verified in 16 paired samples. Two of these five miRNAs were further assessed for their effects on the regulation of gastric cancer cell growth and invasion. Results The miRNA profile data showed 151 upregulated miRNAs (≥ 1.5-fold) and 285 downregulated miRNAs (≤ 0.67-fold) in the metastatic tissues compared to the primary gastric cancer tissues. Among these five miRNAs (i.e., hsa-miR-508-5p, hsa-miR-30c, hsa-miR-337-3p, hsa-miR-483-5p, and hsa-miR-134), expression of hsa-miR-337-3p and hsa-miR-134 was significantly downregulated in these 16 lymph node metastatic tissues compared to their primary tumor tissues (P<0.05) and in nine gastric cancer cell lines compared to the nonmalignant GES cell line. Furthermore, induction of hsa-miR-134 or hsa-miR-337-3p expression did not dramatically affect gastric cancer cell proliferation, but transfection of the hsa-miR-337-3p mimic did reduce gastric cancer cell invasion capacity. Conclusions These findings indicate that hsa-miR-337-3p plays a role in the reduction of gastric cancer cell invasion capacity, and further studies on the mechanism of hsa-miR-337-3p in gastric cancer metastasis are warranted.
Collapse
|
6
|
Machtaler S, Dang-Lawson M, Choi K, Jang C, Naus CC, Matsuuchi L. The gap junction protein Cx43 regulates B-lymphocyte spreading and adhesion. J Cell Sci 2011; 124:2611-21. [PMID: 21750189 DOI: 10.1242/jcs.089532] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The gap junction protein connexin43 (Cx43) is widely expressed in mammalian cells and forms intercellular channels for the transfer of small molecules between adjacent cells, as well as hemichannels that mediate bidirectional transport of molecules between the cell and the surrounding environment. Cx43 regulates cell adhesion and migration in neurons and glioma cells, and we now show that Cx43 influences BCR-, LFA-1- and CXCL12-mediated activation of the Rap1 GTPase. Using shRNA knockdown of Cx43 in WEHI 231 cells, we show that Cx43 is required for sustained Rap1 activation and BCR-mediated spreading. To determine the domains of Cx43 that are important for this effect, Cx43-null J558 μm3 B cells (which express a wild-type IgM BCR) were transfected with wild-type Cx43-GFP or a C-terminal-truncated Cx43 (Cx43ΔT-GFP). Expression of wild-type Cx43-GFP, but not Cx43ΔT-GFP, was sufficient to restore sustained, BCR-mediated Rap1 activation and cell spreading. Cx43, and specifically the C-terminal domain, was also important for LFA-1- and CXCL12-mediated Rap1 activation, spreading and adhesion to an endothelial cell monolayer. These data show that Cx43 has an important and previously unreported role in B-cell processes that are essential to normal B-cell development and immune responses.
Collapse
Affiliation(s)
- Steven Machtaler
- CELL and I³ Research Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|