1
|
Kokan N, Witt S, Sandhu S, Hutter H. lron-11 guides axons in the ventral nerve cord of Caenorhabditis elegans. PLoS One 2022; 17:e0278258. [PMID: 36449480 PMCID: PMC9710760 DOI: 10.1371/journal.pone.0278258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/13/2022] [Indexed: 12/02/2022] Open
Abstract
For the nervous system to develop properly, neurons must connect in a precise way to form functional networks. This requires that outgrowing neuronal processes (axons) navigate to their target areas, where they establish proper synaptic connections. The molecular basis of this navigation process is not firmly understood. A candidate family containing putative receptors acting in various aspects of neuronal development including axon navigation are transmembrane proteins of the extracellular Leucine-Rich Repeat family (eLRRs). We systematically tested members of this family in C. elegans for a role in axon navigation in the ventral nerve cord (VNC). We found that lron-11 mutants showed VNC navigation defects in several classes of neurons, including a pioneer neuron and various classes of interneurons and motoneurons. This suggests that while most members of the lron-family do not seem to have a role in axon navigation in the VNC, lron-11 is likely to be a receptor required for correct navigation of axons in the VNC of C. elegans.
Collapse
Affiliation(s)
- Nikolas Kokan
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Skyla Witt
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Saru Sandhu
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- * E-mail:
| |
Collapse
|
2
|
Chen Z, Chen P, Zheng M, Gao J, Liu D, Wang A, Zheng Q, Leys T, Tai A, Zheng M. Challenges and perspectives of tendon-derived cell therapy for tendinopathy: from bench to bedside. Stem Cell Res Ther 2022; 13:444. [PMID: 36056395 PMCID: PMC9438319 DOI: 10.1186/s13287-022-03113-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Tendon is composed of dense fibrous connective tissues, connecting muscle at the myotendinous junction (MTJ) to bone at the enthesis and allowing mechanical force to transmit from muscle to bone. Tendon diseases occur at different zones of the tendon, including enthesis, MTJ and midsubstance of the tendon, due to a variety of environmental and genetic factors which consequently result in different frequencies and recovery rates. Self-healing properties of tendons are limited, and cell therapeutic approaches in which injured tendon tissues are renewed by cell replenishment are highly sought after. Homologous use of individual’s tendon-derived cells, predominantly differentiated tenocytes and tendon-derived stem cells, is emerging as a treatment for tendinopathy through achieving minimal cell manipulation for clinical use. This is the first review summarizing the progress of tendon-derived cell therapy in clinical use and its challenges due to the structural complexity of tendons, heterogeneous composition of extracellular cell matrix and cells and unsuitable cell sources. Further to that, novel future perspectives to improve therapeutic effect in tendon-derived cell therapy based on current basic knowledge are discussed.
Collapse
Affiliation(s)
- Ziming Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Peilin Chen
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Monica Zheng
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Delin Liu
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Allan Wang
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Qiujian Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, Guangdong, China
| | - Toby Leys
- Department of Orthopaedic Surgery, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Andrew Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Minghao Zheng
- Division of Surgery, Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia. .,Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| |
Collapse
|
3
|
Junion G, Jagla K. Diversification of muscle types in Drosophila embryos. Exp Cell Res 2022; 410:112950. [PMID: 34838813 DOI: 10.1016/j.yexcr.2021.112950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.
Collapse
Affiliation(s)
- Guillaume Junion
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Laufer BI, Hwang H, Vogel Ciernia A, Mordaunt CE, LaSalle JM. Whole genome bisulfite sequencing of Down syndrome brain reveals regional DNA hypermethylation and novel disorder insights. Epigenetics 2019; 14:672-684. [PMID: 31010359 PMCID: PMC6557615 DOI: 10.1080/15592294.2019.1609867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Down Syndrome (DS) is the most common genetic cause of intellectual disability, in which an extra copy of human chromosome 21 (HSA21) affects regional DNA methylation profiles across the genome. Although DNA methylation has been previously examined at select regulatory regions across the genome in a variety of DS tissues and cells, differentially methylated regions (DMRs) have yet to be examined in an unbiased sequencing-based approach. Here, we present the first analysis of DMRs from whole genome bisulfite sequencing (WGBS) data of human DS and matched control brain, specifically frontal cortex. While no global differences in DNA methylation were observed, we identified 3,152 DS-DMRs across the entire genome, the majority of which were hypermethylated in DS. DS-DMRs were significantly enriched at CpG islands and de-enriched at specific gene body and regulatory regions. Functionally, the hypermethylated DS-DMRs were enriched for one-carbon metabolism, membrane transport, and glutamatergic synaptic signalling, while the hypomethylated DMRs were enriched for proline isomerization, glial immune response, and apoptosis. Furthermore, in a cross-tissue comparison to previous studies of DNA methylation from diverse DS tissues and reference epigenomes, hypermethylated DS-DMRs showed a strong cross-tissue concordance, while a more tissue-specific pattern was observed for the hypomethylated DS-DMRs. Overall, this approach highlights that low-coverage WGBS of clinical samples can identify epigenetic alterations to known biological pathways, which are potentially relevant to therapeutic treatments and include metabolic pathways. These results also provide new insights into the genome-wide effects of genetic alterations on DNA methylation profiles indicative of altered neurodevelopment and brain function.
Collapse
Affiliation(s)
- Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Wang X, Zhao X, Yan C, Jia Z, Lv Z, Ma C, Wang M. A novel LRR and Ig domain-containing protein could function as an immune effector in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 88:318-327. [PMID: 30853654 DOI: 10.1016/j.fsi.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
A variety of combinations of leucine-rich repeat (LRR) and immunoglobulin-like (Ig) domains have been found and discovered in invertebrates and vertebrates, but the functions remain largely unexplored. In the present study, a novel LRR and Ig domain-containing protein (LRRIG), CgLRRIG-3, was identified and characterized from oyster Crassostrea gigas. It contained two typical LRR motifs, a LRRNT motif and an Ig domain and PSI-BALST and phylogeny analysis revealed that the sequence of CgLRRIG-3 was most related with leucine-rich repeat neuronal 1 proteins from vertebrate. Its mRNA transcripts were constitutively expressed in muscle, gill, hepatopancreas, mantle, gonad and hemocytes with the highest level in hepatopancreas. The mRNA expression level of CgLRRIG-3 in hemocytes could respond to the stimulations of variety PAMPs including lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU) and polyinosinic-polycytidylic acid (poly I:C). The recombinant proteins exhibited a wide PAMP binding repertoire to four typical PAMPs and could significantly induce the expression of CgTNF-1 and CgIL17-5 as well as increase phagocytosis in primary cultured oyster hemocytes. In hepatopancreas, CgLRRIG-3 was mainly distributed in the basolateral membrane of digestive tubule and the hemocoel sinusoid between the digestive tubules. And in hemocytes, the positive signal was mainly distributed in a special group of granulocytes. These results collectively indicated that CgLRRIG-3 could not only function as an immune effector.
Collapse
Affiliation(s)
- Xiudan Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chunyu Yan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhihao Jia
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Department of Animal Sciences, Purdue University, IN, 47907, USA
| | - Zhao Lv
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mengqiang Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Research Platform for Marine Molecular Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, China.
| |
Collapse
|
6
|
Establishment of the Muscle-Tendon Junction During Thorax Morphogenesis in Drosophila Requires the Rho-Kinase. Genetics 2016; 204:1139-1149. [PMID: 27585845 DOI: 10.1534/genetics.116.189548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023] Open
Abstract
The assembly of the musculoskeletal system in Drosophila relies on the integration of chemical and mechanical signaling between the developing muscles with ectodermal cells specialized as "tendon cells." Mechanical tension generated at the junction of flight muscles and tendon cells of the notum epithelium is required for muscle morphogenesis, and is balanced by the epithelium in order to not deform. We report that Drosophila Rho kinase (DRok) is necessary in tendon cells to assemble stable myotendinous junctions (MTJ), which are required for muscle morphogenesis and survival. In addition, DRok is required in tendon cells to maintain epithelial shape and cell orientation in the notum, independently of chascon (chas). Loss of DRok function in tendon cells results in mis-orientation of tendon cell extensions and abnormal accumulation of Thrombospondin and βPS-integrin, which may cause abnormal myotendinous junction formation and muscle morphogenesis. This role does not depend exclusively on nonmuscular Myosin-II activation (Myo-II), indicating that other DRok targets are key in this process. We propose that DRok function in tendon cells is key to promote the establishment of MTJ attachment and to balance mechanical tension generated at the MTJ by muscle compaction.
Collapse
|
7
|
Schejter ED, Baylies MK. Born to run: creating the muscle fiber. Curr Opin Cell Biol 2011; 22:566-74. [PMID: 20817426 DOI: 10.1016/j.ceb.2010.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/27/2022]
Abstract
From the muscles that control the blink of your eye to those that allow you to walk, the basic architecture of muscle is the same: muscles consist of bundles of the unit muscle cell, the muscle fiber. The unique morphology of the individual muscle fiber is dictated by the functional demands necessary to generate and withstand the forces of contraction, which in turn leads to movement. Contractile muscle fibers are elongated, syncytial cells, which interact with both the nervous and skeletal systems to govern body motion. In this review, we focus on three key cell-cell and cell-matrix contact processes, that are necessary to create this exquisitely specialized cell: cell fusion, cell elongation, and establishment of a myotendinous junction. We address these processes by highlighting recent findings from the Drosophila model system.
Collapse
Affiliation(s)
- Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|