1
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
2
|
Skopál A, Kéki T, Tóth PÁ, Csóka B, Koscsó B, Németh ZH, Antonioli L, Ivessa A, Ciruela F, Virág L, Haskó G, Kókai E. Cathepsin D interacts with adenosine A 2A receptors in mouse macrophages to modulate cell surface localization and inflammatory signaling. J Biol Chem 2022; 298:101888. [PMID: 35367412 PMCID: PMC9065627 DOI: 10.1016/j.jbc.2022.101888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine A2A receptor (A2AR)–dependent signaling in macrophages plays a key role in the regulation of inflammation. However, the processes regulating A2AR targeting to the cell surface and degradation in macrophages are incompletely understood. For example, the C-terminal domain of the A2AR and proteins interacting with it are known to regulate receptor recycling, although it is unclear what role potential A2AR-interacting partners have in macrophages. Here, we aimed to identify A2AR-interacting partners in macrophages that may effect receptor trafficking and activity. To this end, we performed a yeast two-hybrid screen using the C-terminal tail of A2AR as the “bait” and a macrophage expression library as the “prey.” We found that the lysosomal protease cathepsin D (CtsD) was a robust hit. The A2AR–CtsD interaction was validated in vitro and in cellular models, including RAW 264.7 and mouse peritoneal macrophage (IPMΦ) cells. We also demonstrated that the A2AR is a substrate of CtsD and that the blockade of CtsD activity increases the density and cell surface targeting of A2AR in macrophages. Conversely, we demonstrate that A2AR activation prompts the maturation and enzymatic activity of CtsD in macrophages. In summary, we conclude that CtsD is a novel A2AR-interacting partner and thus describe molecular and functional interplay that may be crucial for adenosine-mediated macrophage regulation in inflammatory processes.
Collapse
Affiliation(s)
- Adrienn Skopál
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kéki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Á Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Csóka
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Balázs Koscsó
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zoltán H Németh
- Department of Anesthesiology, Columbia University, New York, New York, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA.
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
3
|
Identification of Cathepsin D as a Plasma Biomarker for Alzheimer's Disease. Cells 2021; 10:cells10010138. [PMID: 33445607 PMCID: PMC7827175 DOI: 10.3390/cells10010138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Abstract
Although Alzheimer’s disease (AD) is the most common neurodegenerative disease, there are still no drugs available to treat or prevent AD effectively. Here, we examined changes in levels of selected proteins implicated in the pathogenesis of AD using plasma samples of control subjects and patients with cognition impairment. To precisely categorize the disease, fifty-six participants were examined with clinical cognitive tests, amyloid positron emission tomography (PET) scan, and white matter hyperintensities scored by magnetic resonance imaging. Plasma cathepsin D levels of the subjects were examined by immunoblotting and enzyme-linked immunosorbent assay (ELISA). Correlation of plasma cathepsin D levels with AD-related factors and clinical characteristics were examined by statistical analysis. By analyzing quantitative immunoblot and ELISA, we found that the plasma level of cathepsin D, a major lysosomal protease, was decreased in the group with amyloid plaque deposition at the brain compared to the control group. The level of plasma cathepsin D was negatively correlated with clinical dementia rating scale sum of boxes (CDR-SB) scores. In addition, our integrated multivariable logistic regression model suggests the high performance of plasma cathepsin D level for discriminating AD from non-AD. These results suggest that the plasma cathepsin D level could be developed as a diagnostic biomarker candidate for AD.
Collapse
|
4
|
He Z, Han S, Zhu H, Hu X, Li X, Hou C, Wu C, Xie Q, Li N, Du X, Ni J, Liu Q. The Protective Effect of Vanadium on Cognitive Impairment and the Neuropathology of Alzheimer's Disease in APPSwe/PS1dE9 Mice. Front Mol Neurosci 2020; 13:21. [PMID: 32210760 PMCID: PMC7077345 DOI: 10.3389/fnmol.2020.00021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a widely distributed neurodegenerative disease characterized clinically by cognitive deficits and pathologically by formation of amyloid-β (Aβ) plaque and neurofibrillary tangles (NFTs) in the brain. Vanadium is a biological trace element that has a function to mimic insulin for diabetes. Bis(ethylmaltolato) oxidovanadium (IV) (BEOV) has been reported to have a hypoglycemic property, but its effect on AD remains unclear. In this study, BEOV was supplemented at doses of 0.2 and 1.0 mmol/L to the AD model mice APPSwe/PS1dE9 for 3 months. The results showed that BEOV substantially ameliorated glucose metabolic disorder as well as synaptic and behavioral deficits of the AD mice. Further investigation revealed that BEOV significantly reduced Aβ generation by increasing the expression of peroxisome proliferator-activated receptor gamma and insulin-degrading enzyme and by decreasing β-secretase 1 in the hippocampus and cortex of AD mice. BEOV also reduced tau hyperphosphorylation by inhibiting protein tyrosine phosphatase-1B and regulating the pathway of insulin receptor/insulin receptor substrate-1/protein kinase B/glycogen synthase kinase 3 beta. Furthermore, BEOV could enhance autophagolysosomal fusion and restore autophagic flux to increase the clearance of Aβ deposits and phosphorylated tau in the brains of AD mice. Collectively, the present study provides solid data for revealing the function and mechanism of BEOV on AD pathology.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| | - Shuangxue Han
- College of Life Science, Huazhong University of Science and Technology, Wuhan, China
| | - Huazhang Zhu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xia Hu
- College of Life Science, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chaofan Hou
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chong Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qingguo Xie
- College of Life Science, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,College of Optoelectronics Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract, Peptidase R. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Ruibal A, Herranz M, Arias JI. Clinical and Biological Significance of Cathepsin D Levels in Breast Cancer Cytosol in Women Over 70 years. BIOMARKERS IN CANCER 2012; 4:1-6. [PMID: 24179390 PMCID: PMC3791914 DOI: 10.4137/bic.s9096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective To study cytosolic cathepsin D behavior and possible relationship with other clinical and biological parameters in women affected by breast invasive ductal carcinomas and older than 70 years (range: 71–88). Material and methods cytosolic levels of cathepsin D were determined by an Immunoradiometric Assay (IRMA-CIS France). Clinical and biological factors analyzed were: size, axillary lymph node involvement, distant metastasis, histological grade, ploidy, S phase cell, cytosolic estrogen receptor, progesterone receptor and pS2, and concentrations of epidermal growth factor receptor (EGFR) in cell membranes. Results Cathepsin D concentrations ranged between 13 and 1228 pmol/mg prot.. Median value of 41 was considered as threshold of positivity. Cathepsin D positive tumors showed higher S-phase values (P = 0.046) and were most often histological grade III (P = 0.047). However, the most important finding was the existence of a positive correlation (r = 0.51786) and statistically significant (P < 0.05) between S-phase values and cathepsin D in the overall group of tumors, and those ER+, but not in ER−. We determined cathepsin D concentrations in 131 women with invasive ductal breast carcinomas, but aged between 50 and 70 years (median 61) and we did not find differences based on those values in women >70 years. In addition, we found no correlation between S-phase values and Cathepsin D, both overall and in relation with hormone dependence (ER). Conclusions Those results led us to the following conclusions: (1) cytosolic concentrations of cathepsin D in invasive infiltrating breast carcinomas in women over 70 are similar to those seen in women with the same type of tumor, but aged 50 to 70 years and are associated with increased cell proliferation measured by S phase, and histological grade III; (2) in women older than 70 years, cathepsin D concentrations are statistically significantly correlated with phase synthesis values in hormone-dependent tumors, but not in hormone-independent, fact not observed in infiltrating ductal breast carcinomas of women aged between 50 and 70. This could reflect a different mitogenic role of the aspartyl protease enzyme linked to hormone dependence as age function parameter.
Collapse
Affiliation(s)
- Alvaro Ruibal
- Nuclear Medicine Service, Medicine Faculty, Molecular Imaging Group, IDIS, University Hospital Complex, Travesía de Choupana s/n, 15706-Santiago de Compostela, Spain
| | | | | |
Collapse
|
7
|
Casado-Vela J, Gómez del Pulgar T, Cebrián A, Alvarez-Ayerza N, Lacal JC. Human urine proteomics: building a list of human urine cancer biomarkers. Expert Rev Proteomics 2011; 8:347-60. [PMID: 21679116 DOI: 10.1586/epr.11.26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the last decade, several reports have focused on the identification and characterization of proteins present in urine. In an effort to build a list of proteins of interest as biomarkers, we reviewed the largest urine proteomes and built two updated lists of proteins of interest (available as supplementary tables). The first table includes a consensus list of 443 proteins found in urine by independent laboratories and reported on the top three largest urine proteomes currently published. This consensus list of proteins could serve as biomarkers to diagnose, monitor and manage a number of diseases. Here, we focus on a reduced list of 35 proteins with potential interest as cancer biomarkers in urine following two criteria: first, proteins previously detected in urine using bottom-up proteomic experiments, and second, those suggested as cancer protein biomarkers in human plasma. In an effort to standardize the information presented and its use in future studies, here we include the updated International Protein Index (v. 3.80) and primary Swiss-Prot accession numbers, official gene symbols and recommended full names. The main variables that influence urine proteomic experiments are also discussed.
Collapse
Affiliation(s)
- Juan Casado-Vela
- Translational Oncology Unit, Instituto de Investigaciones Biomédicas Alberto Sols, Spanish National Research Council (CSIC), 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|