1
|
Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers (Basel) 2021; 13:4703. [PMID: 34572930 PMCID: PMC8472046 DOI: 10.3390/cancers13184703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are the only tumor cells possessing self-renewal and differentiation properties, making them an engine of tumor progression and a source of tumor regrowth after treatment. Conventional therapies eliminate most non-CSCs, while CSCs often remain radiation and drug resistant, leading to tumor relapse and metastases. Thus, targeting CSCs might be a powerful tool to overcome tumor resistance and increase the efficiency of current cancer treatment strategies. The identification and isolation of the CSC population based on its high aldehyde dehydrogenase activity (ALDH) is widely accepted for prostate cancer (PCa) and many other solid tumors. In PCa, several ALDH genes contribute to the ALDH activity, which can be measured in the enzymatic assay by converting 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) aminoacetaldehyde (BAAA) into the fluorescent product BODIPY-aminoacetate (BAA). Although each ALDH isoform plays an individual role in PCa biology, their mutual functional interplay also contributes to PCa progression. Thus, ALDH proteins are markers and functional regulators of CSC properties, representing an attractive target for cancer treatment. In this review, we discuss the current state of research regarding the role of individual ALDH isoforms in PCa development and progression, their possible therapeutic targeting, and provide an outlook for the future advances in this field.
Collapse
Affiliation(s)
- Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| |
Collapse
|
2
|
Matsuda Y, Narita S, Nara T, Mingguo H, Sato H, Koizumi A, Kanda S, Numakura K, Saito M, Inoue T, Hiroshima Y, Nanjo H, Satoh S, Tsuchiya N, Habuchi T. Impact of nuclear YAP1 expression in residual cancer after neoadjuvant chemohormonal therapy with docetaxel for high-risk localized prostate cancer. BMC Cancer 2020; 20:302. [PMID: 32293349 PMCID: PMC7333261 DOI: 10.1186/s12885-020-06844-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Although docetaxel-based chemohormonal therapy (CHT) is one of the standard treatments for castration-resistant prostate cancer (CRPC), pertinent biomarkers and precise mechanisms involved in the resistance for CHT for CRPC remain unknown. We investigated the relationship between chemohormonal resistance and the expression of steroid receptors and Hippo pathway proteins using a docetaxel-resistant prostate cancer (PCa) cell line and human PCa tissues in patients who underwent surgery with and without neoadjuvant therapy. Methods A docetaxel-resistant subline (22Rv1-DR) was generated to assess Hippo pathway protein expression and the effect of YAP1 inhibition on cellular characteristics. A tissue microarray with 203 cores from 70 high-risk localized PCa tissues was performed to assess steroid receptor and Hippo pathway protein expressions. Results Nuclear YAP (nYAP) expression was higher in 22RV-1-DR than in parental 22Rv-1 and YAP1 knockdown suppressed cell proliferation of 22Rv1-DR. Steroid receptor and Hippo pathway protein expressions varied among three different neoadjuvant groups, and nYAP1 expression was the highest in the CHT group. The patients with high nYAP in residual cancer after neoadjuvant CHT had a significantly higher biochemical recurrence (BCR) rate than those with low nYAP1. On multivariate analysis, the high nYAP1 was an independent prognostic factor for BCR. Conclusions nYAP expression is a potential biomarker in high-risk patients treated with docetaxel-based CHT. Steroid receptors and Hippo pathway proteins may play a role in the chemohormonal resistance in advanced PCa.
Collapse
Affiliation(s)
- Yoshinori Matsuda
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shintaro Narita
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Taketoshi Nara
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Huang Mingguo
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiromi Sato
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Atsushi Koizumi
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sohei Kanda
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Mitsuru Saito
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Takamitsu Inoue
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuko Hiroshima
- Department of Pathology, Akita University Hospital, Akita, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Hospital, Akita, Japan
| | - Shigeru Satoh
- Center for Kidney Disease and Transplantation, Akita University Hospital, Akita, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Yamagata University School of Medicine, Akita, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
3
|
The alpha helix of the intermediate region in hGBP-1 acts as a coupler for enhanced GMP formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140364. [PMID: 31954926 DOI: 10.1016/j.bbapap.2020.140364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/15/2019] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Abstract
The interferon-gamma inducible large GTPase human guanylate binding protein-1 (hGBP-1) plays a key role in anti-pathogenic and anti-proliferative functions. This protein hydrolyzes GTP to both GDP and GMP (predominant product) through sequential phosphate cleavages, which makes it functionally distinct from other GTPases. Previous study on truncated variants of hGBP-1 suggested that the α-helix present in the intermediate region is essential for dimerization and thus for GMP formation. However, the role of this helix in the full-length protein in GMP formation is not clearly understood. Here, we present that substitution of the helix with a Gly-rich flexible (GGS)3 sequence in the full-length hGBP-1 (termed as linker protein) showed a drastic decrease in GMP formation. Unlike wild-type, the linker protein is not capable of undergoing substrate-induced dimerization and thereby transition state-induced tetramerization, suggesting the importance of the helix in oligomerization. Furthermore, we examined the effect of interactions between this helix and the α2-helix of the globular domain in GMP formation through mutational studies. The L118G mutation in the α2-helix showed a significantly reduced GMP formation. These results indicate that the interactions of the α-helix with the α2-helix are essential for enhanced GMP production. We propose that these interactions help in the oligomerization-assisted proper positioning of the catalytic machinery for efficient second phosphate cleavage. These findings thus provide a better understanding into the regulation of GMP formation in a large GTPase hGBP-1.
Collapse
|
4
|
Zhao J, Li X, Liu L, Cao J, Goscinski MA, Fan H, Li H, Suo Z. Oncogenic Role of Guanylate Binding Protein 1 in Human Prostate Cancer. Front Oncol 2020; 9:1494. [PMID: 31998647 PMCID: PMC6967410 DOI: 10.3389/fonc.2019.01494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023] Open
Abstract
The Guanylate binding proteins (GBPs) are a family of large GTPases and the most studied GBP family member is the guanylate binding protein 1 (GBP1). Earlier studies revealed that GBP1 expression was inflammatory cytokines-inducible, and most of the studies focused on inflammation diseases. Increasing number of cancer studies began to reveal its biological role in cancers recently, although with contradictory findings in literature. It was discovered from our earlier prostate cancer cell line models studies that when prostate cancer cells treated with either ethidium bromide or a cell cycle inhibitor flavopiridol for a long-term, the treatment-survived tumor cells experienced metabolic reprogramming toward Warburg effect pathways with greater aggressive features, and one common finding from these cells was the upregulation of GBP1. In this study, possible role of GBP1 in two independent prostate cancer lines by application of CRISR/Cas9 gene knockout (KO) technology was investigated. The GBP1 gene KO DU145 and PC3 prostate cancer cells were significantly less aggressive in vitro, with less proliferation, migration, wound healing, and colony formation capabilities, in addition to a significantly lower level of mitochondrial oxidative phosphorylation and glycolysis. At the same time, such GBP1 KO cells were significantly more sensitive to chemotherapeutic reagents. Xenograft experiments verified a significantly slower tumor growth of the GBP1 KO cells in nude mouse model. Furthermore, GBP1 protein expression in clinical prostate cancer sample revealed its aggressive clinical feature correlation and shorter overall survival association. Collectively, our results indicate a pro-survival or oncogenic role of GBP1 in prostate cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Oncology, Zhengzhou University, The Academy of Medical Science, Zhengzhou, China
| | - Xiangyu Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Liu
- Department of Oncology, Zhengzhou University, The Academy of Medical Science, Zhengzhou, China.,Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mariusz Adam Goscinski
- Department of Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
A novel DNA-binding motif in prostate tumor overexpressed-1 (PTOV1) required for the expression of ALDH1A1 and CCNG2 in cancer cells. Cancer Lett 2019; 452:158-167. [PMID: 30922918 DOI: 10.1016/j.canlet.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
PTOV1 is a transcription and translation regulator and a promoter of cancer progression. Its overexpression in prostate cancer induces transcription of drug resistance and self-renewal genes, and docetaxel resistance. Here we studied PTOV1 ability to directly activate the transcription of ALDH1A1 and CCNG2 by binding to specific promoter sequences. Chromatin immunoprecipitation and electrophoretic mobility shift assays identified a DNA-binding motif inside the PTOV-A domain with similarities to known AT-hooks that specifically interacts with ALDH1A1 and CCNG2 promoters. Mutation of this AT-hook-like sequence significantly decreased the expression of ALDH1A1 and CCNG2 promoted by PTOV1. Immunohistochemistry revealed the association of PTOV1 with mitotic chromosomes in high grade prostate, colon, bladder, and breast carcinomas. Overexpression of PTOV1, ALDH1A1, and CCNG2 significantly correlated with poor prognosis in prostate carcinomas and with shorter relapse-free survival in colon carcinoma. The previously described interaction with translation complexes and its direct binding to ALDH1A1 and CCNG2 promoters found here reveal the PTOV1 capacity to modulate the expression of critical genes at multiple levels in aggressive cancers. Remarkably, the AT-hook motifs in PTOV1 open possibilities for selective targeting its nuclear and/or cytoplasmic activities.
Collapse
|
6
|
T lymphocytes facilitate brain metastasis of breast cancer by inducing Guanylate-Binding Protein 1 expression. Acta Neuropathol 2018; 135:581-599. [PMID: 29350274 PMCID: PMC5978929 DOI: 10.1007/s00401-018-1806-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 02/01/2023]
Abstract
The discovery of genes and molecular pathways involved in the formation of brain metastasis would direct the development of therapeutic strategies to prevent this deadly complication of cancer. By comparing gene expression profiles of Estrogen Receptor negative (ER-) primary breast tumors between patients who developed metastasis to brain and to organs other than brain, we found that T lymphocytes promote the formation of brain metastases. To functionally test the ability of T cells to promote brain metastasis, we used an in vitro blood–brain barrier (BBB) model. By co-culturing T lymphocytes with breast cancer cells, we confirmed that T cells increase the ability of breast cancer cells to cross the BBB. Proteomics analysis of the tumor cells revealed Guanylate-Binding Protein 1 (GBP1) as a key T lymphocyte-induced protein that enables breast cancer cells to cross the BBB. The GBP1 gene appeared to be up-regulated in breast cancer of patients who developed brain metastasis. Silencing of GBP1 reduced the ability of breast cancer cells to cross the in vitro BBB model. In addition, the findings were confirmed in vivo in an immunocompetent syngeneic mouse model. Co-culturing of ErbB2 tumor cells with activated T cells induced a significant increase in Gbp1 expression by the cancer cells. Intracardial inoculation of the co-cultured tumor cells resulted in preferential seeding to brain. Moreover, intracerebral outgrowth of the tumor cells was demonstrated. The findings point to a role of T cells in the formation of brain metastases in ER- breast cancers, and provide potential targets for intervention to prevent the development of cerebral metastases.
Collapse
|
7
|
Gravina GL, Mancini A, Colapietro A, Marampon F, Sferra R, Pompili S, Biordi LA, Iorio R, Flati V, Argueta C, Landesman Y, Kauffman M, Shacham S, Festuccia C. Pharmacological treatment with inhibitors of nuclear export enhances the antitumor activity of docetaxel in human prostate cancer. Oncotarget 2017; 8:111225-111245. [PMID: 29340049 PMCID: PMC5762317 DOI: 10.18632/oncotarget.22760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Background and aims Docetaxel (DTX) modestly increases patient survival of metastatic castration-resistant prostate cancer (mCRPC) due to insurgence of pharmacological resistance. Deregulation of Chromosome Region Maintenance (CRM-1)/ exportin-1 (XPO-1)-mediated nuclear export may play a crucial role in this phenomenon. Material and methods Here, we evaluated the effects of two Selective Inhibitor of Nuclear Export (SINE) compounds, selinexor (KPT-330) and KPT-251, in association with DTX by using 22rv1, PC3 and DU145 cell lines with their. DTX resistant derivatives. Results and conclusions We show that DTX resistance may involve overexpression of β-III tubulin (TUBB3) and P-glycoprotein as well as increased cytoplasmic accumulation of Foxo3a. Increased levels of XPO-1 were also observed in DTX resistant cells suggesting that SINE compounds may modulate DTX effectiveness in sensitive cells as well as restore the sensitivity to DTX in resistant ones. Pretreatment with SINE compounds, indeed, sensitized to DTX through increased tumor shrinkage and apoptosis by preventing DTX-induced cell cycle arrest. Basally SINE compounds induce FOXO3a activation and nuclear accumulation increasing the expression of FOXO-responsive genes including p21, p27 and Bim causing cell cycle arrest. SINE compounds-catenin and survivin supporting apoptosis. βdown-regulated Cyclin D1, c-myc, Nuclear sequestration of p-Foxo3a was able to reduce ABCB1 and TUBB3 H2AX levels, prolonged γ expression. Selinexor treatment increased DTX-mediated double strand breaks (DSB), and reduced the levels of DNA repairing proteins including DNA PKc and Topo2A. Our results provide supportive evidence for the therapeutic use of SINE compounds in combination with DTX suggesting their clinical use in mCRPC patients.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, Division of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, Division of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Division of Molecular Pathology, University of L'Aquila, L'Aquila, Italy
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, Division of Applied Biology, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, Division of Molecular Pathology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
8
|
Cánovas V, Puñal Y, Maggio V, Redondo E, Marín M, Mellado B, Olivan M, Lleonart M, Planas J, Morote J, Paciucci R. Prostate Tumor Overexpressed-1 (PTOV1) promotes docetaxel-resistance and survival of castration resistant prostate cancer cells. Oncotarget 2017; 8:59165-59180. [PMID: 28938627 PMCID: PMC5601723 DOI: 10.18632/oncotarget.19467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Metastatic prostate cancer is presently incurable. The oncogenic protein PTOV1, first described in prostate cancer, was reported as overexpressed and significantly correlated with poor survival in numerous tumors. Here, we investigated the role of PTOV1 in prostate cancer survival to docetaxel and self-renewal ability. Transduction of PTOV1 in docetaxel-sensitive Du145 and PC3 cells significantly increased cell survival after docetaxel exposure and induced docetaxel-resistance genes expression (ABCB1, CCNG2 and TUBB2B). In addition, PTOV1 induced prostatospheres formation and self-renewal genes expression (ALDH1A1, LIN28A, MYC and NANOG). In contrast, Du145 and PC3 cells knockdown for PTOV1 significantly accumulated in the G2/M phase, presented a concomitant increased subG1 peak, and cell death by apoptosis. These effects were enhanced in docetaxel-resistant cells. Analyses of tumor datasets show that PTOV1 expression significantly correlated with prostate tumor grade, drug resistance (CCNG2) and self-renewal (ALDH1A1, MYC) markers. These genes are concurrently overexpressed in most metastatic lesions. Metastases also show PTOV1 genomic amplification in significant co-occurrence with docetaxel-resistance and self-renewal genes. Our findings identify PTOV1 as a promoter of docetaxel-resistance and self-renewal characteristics for castration resistant prostate cancer. The concomitant increased expression of PTOV1, ALDH1A1 and CCNG2 in primary tumors, may predict metastasis and bad prognosis.
Collapse
Affiliation(s)
- Verónica Cánovas
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yolanda Puñal
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valentina Maggio
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enric Redondo
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Marín
- Laboratory of Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Medical Oncoloy Department, Hospital Clinic, Barcelona, Spain
| | - Begoña Mellado
- Laboratory of Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Medical Oncoloy Department, Hospital Clinic, Barcelona, Spain
| | - Mireia Olivan
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde Lleonart
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacques Planas
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Deparment of Urology, Vall d'Hebron Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Morote
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Deparment of Urology, Vall d'Hebron Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosanna Paciucci
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Stockdale TP, Williams CM. Pharmaceuticals that contain polycyclic hydrocarbon scaffolds. Chem Soc Rev 2015; 44:7737-63. [DOI: 10.1039/c4cs00477a] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review comprehensively explores approved pharmaceutical compounds that contain polycyclic scaffolds and the properties that these skeletons convey.
Collapse
Affiliation(s)
- Tegan P. Stockdale
- School of Chemistry and Molecular Biosciences
- University of Queensland
- St Lucia
- Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences
- University of Queensland
- St Lucia
- Australia
| |
Collapse
|
10
|
Sissung TM, Price DK, Del Re M, Ley AM, Giovannetti E, Figg WD, Danesi R. Genetic variation: effect on prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:446-456. [PMID: 25199985 PMCID: PMC4260983 DOI: 10.1016/j.bbcan.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 02/09/2023]
Abstract
The crucial role of androgens in the development of prostate cancer is well established. The aim of this review is to examine the role of constitutional (germline) and tumor-specific (somatic) polymorphisms within important regulatory genes of prostate cancer. These include genes encoding enzymes of the androgen biosynthetic pathway, the androgen receptor gene, genes that encode proteins of the signal transduction pathways that may have a role in disease progression and survival, and genes involved in prostate cancer angiogenesis. Characterization of deregulated pathways critical to cancer cell growth have lead to the development of new treatments, including the CYP17 inhibitor abiraterone and clinical trials using novel drugs that are ongoing or recently completed [1]. The pharmacogenetics of the drugs used to treat prostate cancer will also be addressed. This review will define how germline polymorphisms are known affect a multitude of pathways, and therefore phenotypes, in prostate cancer etiology, progression, and treatment.
Collapse
Affiliation(s)
- Tristan M Sissung
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K Price
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marzia Del Re
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Ariel M Ley
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elisa Giovannetti
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - William D Figg
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
11
|
Fukumoto M, Amanuma T, Kuwahara Y, Shimura T, Suzuki M, Mori S, Kumamoto H, Saito Y, Ohkubo Y, Duan Z, Sano K, Oguchi T, Kainuma K, Usami S, Kinoshita K, Lee I, Fukumoto M. Guanine nucleotide-binding protein 1 is one of the key molecules contributing to cancer cell radioresistance. Cancer Sci 2014; 105:1351-9. [PMID: 25098609 PMCID: PMC4462352 DOI: 10.1111/cas.12489] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/07/2023] Open
Abstract
Standard fractionated radiotherapy for the treatment of cancer consists of daily irradiation of 2-Gy X-rays, 5 days a week for 5-8 weeks. To understand the characteristics of radioresistant cancer cells and to develop more effective radiotherapy, we established a series of novel, clinically relevant radioresistant (CRR) cells that continue to proliferate with 2-Gy X-ray exposure every 24 h for more than 30 days in vitro. We studied three human and one murine cell line, and their CRR derivatives. Guanine nucleotide-binding protein 1 (GBP1) gene expression was higher in all CRR cells than their corresponding parental cells. GBP1 knockdown by siRNA cancelled radioresistance of CRR cells in vitro and in xenotransplanted tumor tissues in nude mice. The clinical relevance of GBP1 was immunohistochemically assessed in 45 cases of head and neck cancer tissues. Patients with GBP1-positive cancer tended to show poorer response to radiotherapy. We recently reported that low dose long-term fractionated radiation concentrates cancer stem cells (CSCs). Immunofluorescence staining of GBP1 was stronger in CRR cells than in corresponding parental cells. The frequency of Oct4-positive CSCs was higher in CRR cells than in parental cells, however, was not as common as GBP1-positive cells. GBP1-positive cells were radioresistant, but radioresistant cells were not necessarily CSCs. We concluded that GBP1 overexpression is necessary for the radioresistant phenotype in CRR cells, and that targeting GBP1-positive cancer cells is a more efficient method in conquering cancer than targeting CSCs.
Collapse
Affiliation(s)
- Motoi Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Persico M, Petrella L, Orteca N, Di Dato A, Mariani M, Andreoli M, De Donato M, Scambia G, Novellino E, Ferlini C, Fattorusso C. GTP is an allosteric modulator of the interaction between the guanylate-binding protein 1 and the prosurvival kinase PIM1. Eur J Med Chem 2014; 91:132-44. [PMID: 25081641 DOI: 10.1016/j.ejmech.2014.07.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 12/31/2022]
Abstract
GBP1 and PIM1 are known to interact with a molar ratio 1:1. GBP1:PIM1 binding initiates a signaling pathway that induces resistance to common chemotherapeutics such as paclitaxel. Since GBP1 is a large GTPase which undergoes conformational changes in a nucleotide-dependent manner, we investigated the effect of GTP/GDP binding on GBP1:PIM1 interaction by using computational and biological studies. It resulted that only GTP decreases the formation of the GBP1:PIM1 complex through an allosteric mechanism, putting the bases for the identification of new compounds potentially able to revert resistance to paclitaxel.
Collapse
Affiliation(s)
- Marco Persico
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy
| | - Lella Petrella
- Laboratory of Molecular Oncology, Jean Paul II Research Foundation, Campobasso 86100, Italy
| | - Nausicaa Orteca
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy
| | - Antonio Di Dato
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy
| | - Marisa Mariani
- Danbury Hospital Research Institute, Danbury, CT 06810, USA
| | - Mirko Andreoli
- Danbury Hospital Research Institute, Danbury, CT 06810, USA
| | - Marta De Donato
- Catholic University of the Sacred Heart, Department of Obstetrics and Gynaecology, Rome, Italy
| | - Giovanni Scambia
- Catholic University of the Sacred Heart, Department of Obstetrics and Gynaecology, Rome, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy
| | | | - Caterina Fattorusso
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy.
| |
Collapse
|
13
|
Vöpel T, Hengstenberg CS, Peulen TO, Ajaj Y, Seidel CAM, Herrmann C, Klare JP. Triphosphate induced dimerization of human guanylate binding protein 1 involves association of the C-terminal helices: a joint double electron-electron resonance and FRET study. Biochemistry 2014; 53:4590-600. [PMID: 24991938 DOI: 10.1021/bi500524u] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human guanylate binding protein 1 (hGBP1) is a member of the dynamin superfamily of large GTPases. During GTP hydrolysis, the protein undergoes structural changes leading to self-assembly. Previous studies have suggested dimerization of the protein by means of its large GTPase (LG) domain and significant conformational changes in helical regions near the LG domain and at its C-terminus. We used site-directed labeling and a combination of pulsed electron paramagnetic resonance and time-resolved fluorescence spectroscopy for structural investigations on hGBP1 dimerization and conformational changes of its C-terminal helix α13. Consistent distance measurements by double electron-electron resonance (DEER, also named pulse double electron resonance = PELDOR) spectroscopy and Förster resonance energy transfer (FRET) measurements using model-free analysis approaches revealed a close interaction of the two α13 helices in the hGBP1 dimer formed upon binding of the nonhydrolyzable nucleoside triphosphate derivate GppNHp. In molecular dynamics (MD) simulations, these two helices form a stable dimer in solution. Our data show that dimer formation of hGBP1 involves multiple spatially distant regions of the protein, namely, the N-terminal LG domain and the C-terminal helices α13. The contacts formed between the two α13 helices and the resulting juxtaposition are expected to be a key step for the physiological membrane localization of hGBP1 through the farnesyl groups attached to the end of α13.
Collapse
Affiliation(s)
- Tobias Vöpel
- Physical Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum , Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
MAGADOUX L, ISAMBERT N, PLENCHETTE S, JEANNIN J, LAURENS V. Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer (Review). Int J Oncol 2014; 45:919-28. [DOI: 10.3892/ijo.2014.2517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
|
15
|
Al Nakouzi N, Cotteret S, Commo F, Gaudin C, Rajpar S, Dessen P, Vielh P, Fizazi K, Chauchereau A. Targeting CDC25C, PLK1 and CHEK1 to overcome Docetaxel resistance induced by loss of LZTS1 in prostate cancer. Oncotarget 2014; 5:667-78. [PMID: 24525428 PMCID: PMC3996665 DOI: 10.18632/oncotarget.1574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/06/2014] [Indexed: 11/25/2022] Open
Abstract
Docetaxel is used as a standard treatment in patients with metastatic castration-resistant prostate cancer. However, a large subset of patients develops resistance. Understanding resistance mechanisms, which are largely unknown, will allow identification of predictive biomarkers and therapeutic targets. We established resistant IGR-CaP1 prostate cancer cell lines for different doses of Docetaxel. We investigated gene expression profiles by microarray analyses in these cell lines and generated a signature of 99 highly differentially expressed genes potentially implicated in chemoresistance. We focused on the role of the cell cycle regulator LZTS1, which was under-expressed in the Docetaxel-resistant cell lines, its inhibition resulting from the promoter methylation. Knockdown of LZTS1 in parental cells with siRNA showed that LZTS1 plays a role in the acquisition of the resistant phenotype. Furthermore, we observed that targeting CDC25C, a partner of LZTS1, with the NSC663284 inhibitor specifically killed the Docetaxel-resistant cells. To further investigate the role of CDC25C, we used inhibitors of the mitotic kinases that regulate CDC25C. Inhibition of CHEK1 and PLK1 induced growth arrest and cell death in the resistant cells. Our findings identify an important role of LZTS1 through its regulation of CDC25C in Docetaxel resistance in prostate cancer and suggest that CDC25C, or the mitotic kinases CHEK1 and PLK1, could be efficient therapeutic targets to overcome Docetaxel resistance.
Collapse
Affiliation(s)
- Nader Al Nakouzi
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Sophie Cotteret
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Frédéric Commo
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Catherine Gaudin
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Shanna Rajpar
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | | | - Philippe Vielh
- INSERM U981, LabEx LERMIT, Gustave Roussy
- Department of Pathology, HistoCytoPathology Unit, Translational Research Laboratory and Biobank, Gustave Roussy
- University Paris-Sud 11, France
| | - Karim Fizazi
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- Department of Medicine, Gustave Roussy
- University Paris-Sud 11, France
| | - Anne Chauchereau
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| |
Collapse
|
16
|
Bracarda S, Gernone A, Gasparro D, Marchetti P, Ronzoni M, Bortolus R, Fratino L, Basso U, Mazzanti R, Messina C, Tucci M, Boccardo F, Cartenì G, Pinto C, Fornarini G, Mattioli R, Procopio G, Chiuri V, Scotto T, Dondi D, Di Lorenzo G. Real-world cabazitaxel safety: the Italian early-access program in metastatic castration-resistant prostate cancer. Future Oncol 2013; 10:975-83. [PMID: 24295376 DOI: 10.2217/fon.13.256] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Cabazitaxel is a novel taxane that is approved for use in metastatic castration-resistant prostate cancer based on the Phase III TROPIC study, which showed improved overall survival with cabazitaxel/prednisone versus mitoxantrone/prednisone. A global early-access program was initiated in order to provide early access to cabazitaxel in docetaxel-pretreated patients and to obtain real-world data. PATIENTS & METHODS We report interim safety results from an Italian prospective, single-arm, multicenter, open-label trial of 218 patients receiving cabazitaxel 25 mg/m2 every 3 weeks plus prednisolone 10 mg/day, until disease progression, unacceptable toxicity, investigator's decision or death. RESULTS Patients completing treatment received a median of six cabazitaxel cycles. The most common grade 3/4 adverse events were neutropenia (33.9%), leukopenia (15.6%), anemia (6%) and asthenia (6%). No peripheral neuropathy or nail disorders were observed. CONCLUSION These results confirm that cabazitaxel has a manageable safety profile in daily clinical practice and support its use in patients with prostate cancer who progress during or after a docetaxel-based therapy.
Collapse
Affiliation(s)
- Sergio Bracarda
- Medical Oncology Unit, Department of Oncology, San Donato Hospital, 52100 Arezzo, Italy; Department of Oncology USL8, Istituto Toscano Tumori (ITT), San Donato Hospital, Via Pietro Nenni 20, 52100 Arezzo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McKeage K. Docetaxel: a review of its use for the first-line treatment of advanced castration-resistant prostate cancer. Drugs 2012; 72:1559-77. [PMID: 22818017 DOI: 10.2165/11209660-000000000-00000] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Docetaxel (Taxotere®) is a well established anti-mitotic chemotherapy agent. Among other therapeutic indications, docetaxel plus prednisone is indicated for first-line chemotherapy in patients with castration-resistant prostate cancer (CRPC). Docetaxel every 3 weeks plus continuous prednisone has been standard first-line chemotherapy in CRPC since demonstrating improved survival compared with the previous standard regimen, mitoxantrone plus prednisone, in the phase III TAX 327 trial in 2004. Since that time, docetaxel has been combined with various agents that demonstrated additive or synergistic activity in preclinical studies in an effort to further improve outcomes, but to date, overall survival has not been extended compared with docetaxel plus prednisone. However, several promising agents are emerging with a potential role in docetaxel-based combinations based on efficacy and manageable toxicity, including bevacizumab, dasatinib and atrasentan. In the TAX 327 trial, neutropenia was relatively common in the group receiving 3-weekly docetaxel plus prednisone, but infection was rare. The tolerability of a weekly docetaxel regimen also administered in this trial was not significantly different to that of the 3-weekly regimen, except for a lower incidence of grade 3 or 4 neutropenia. However, weekly or 2-weekly docetaxel administration schedules may have a place in very elderly or frail patients in order to improve tolerability compared with the 3-weekly regimen. In conclusion, docetaxel every 3 weeks plus prednisone remains the optimum first-line chemotherapy for most patients with advanced CRPC until such time that ongoing research with docetaxel and emerging therapeutic agents can demonstrate improved survival.
Collapse
|
18
|
Syguda A, Bauer M, Benscheid U, Ostler N, Naschberger E, Ince S, Stürzl M, Herrmann C. Tetramerization of human guanylate-binding protein 1 is mediated by coiled-coil formation of the C-terminal α-helices. FEBS J 2012; 279:2544-54. [PMID: 22607347 DOI: 10.1111/j.1742-4658.2012.08637.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The human guanylate-binding protein 1 (hGBP1) is a large GTP-binding protein belonging to the dynamin family, a common feature of which is nucleotide-dependent assembly to homotypic oligomers. Assembly leads to stimulation of GTPase activity, which, in the case of dynamin, is responsible for scission of vesicles from membranes. By yeast two-hybrid and biochemical experiments we addressed intermolecular interactions between all subdomains of hGBP1 and identified the C-terminal subdomain, α12/13, as a new interaction site for self-assembly. α12/13 represents a stable subdomain of hGBP1, as shown by CD spectroscopy. In addition to contacts between GTPase domains leading to dimer formation, the interaction between two α12/13 subdomains, in the course of GTP hydrolysis, results in tetramer formation of the protein. With the help of CD spectroscopy we showed coiled-coil formation of two α12/13 subdomains and concentration-dependent measurements allow estimating a value for the dissociation constant of 7.3 μM. We suggest GTP hydrolysis-driven release of the α12/13 subdomain, making it available for coiled-coil formation. Furthermore, we can demonstrate the biological relevance of hGBP1 tetramer formation in living cells by chemical cross-link experiments.
Collapse
Affiliation(s)
- Adrian Syguda
- Physical Chemistry I, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Marín-Aguilera M, Codony-Servat J, Kalko SG, Fernández PL, Bermudo R, Buxo E, Ribal MJ, Gascón P, Mellado B. Identification of Docetaxel Resistance Genes in Castration-Resistant Prostate Cancer. Mol Cancer Ther 2011; 11:329-39. [DOI: 10.1158/1535-7163.mct-11-0289] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Experimental models for the development of new medical treatments in prostate cancer. Eur J Cancer 2011; 47 Suppl 3:S200-14. [DOI: 10.1016/s0959-8049(11)70166-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|