1
|
Pingping Z, Nan C, Yong T. Phytochemicals and their Nanoformulations for Overcoming Drug Resistance in Head and Neck Squamous Cell Carcinoma. Pharm Res 2025; 42:429-449. [PMID: 40032776 DOI: 10.1007/s11095-025-03836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Drug resistance remains a significant challenge in the treatment of head and neck squamous cell carcinoma (HNSCC), leading to therapeutic failure and poor patient prognosis. Numerous mechanisms, including drug efflux pumps, altered tumor microenvironment (TME), and dysregulated cell death pathways, contribute to the development of resistance against conventional chemotherapeutic agents, immunotherapy, and targeted therapies. As resistance to traditional treatments continues to emerge, there is an urgent need for innovative therapeutic strategies to overcome these challenges. Phytochemicals are naturally occurring bioactive compounds and have demonstrated remarkable potential in targeting multiple resistance mechanisms simultaneously. METHOD This review comprehensively overviews the current understanding of drug resistance mechanisms in HNSCC and explores innovative strategies utilizing phytochemicals and their nanoformulations to overcome these resistance mechanisms, with a particular focus on recent developments and future perspectives in this field. RESULTS AND DISCUSSION Phytochemicals with anticancer properties include a wide range of herbal-derived molecules such as flavonoids, stilbenes, curcuminoids, alkaloids, traditional Chinese medicine, and others. These compounds can modulate ATP-binding cassette transporters, reverse epithelial-to-mesenchymal transition (EMT), target cancer stem cells (CSCs), and regulate various signaling pathways involved in drug resistance. The integration of phytochemicals into advanced nanoformulation systems has also shown a remarkable improvement in enhancing their bioavailability, stability, and targeted delivery to the TME, potentially improving their therapeutic efficacy. Furthermore, the combination of phytochemicals with conventional chemotherapeutic agents, targeted molecular therapy, and immune checkpoint inhibitors (ICIs) has exhibited synergistic effects, offering a promising approach to restoring drug sensitivity in resistant HNSCC cells. CONCLUSION Phytochemicals and their nanoformulations may improve response of HNSCC to therapy by alleviating drug resistance.
Collapse
Affiliation(s)
- Zhai Pingping
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150000, China
| | - Chen Nan
- Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Tang Yong
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin, 150000, China.
| |
Collapse
|
2
|
Al-Karmalawy AA, Rashed M, Sharaky M, Abulkhair HS, Hammouda MM, Tawfik HO, Shaldam MA. Novel fused imidazotriazines acting as promising top. II inhibitors and apoptotic inducers with greater selectivity against head and neck tumors: Design, synthesis, and biological assessments. Eur J Med Chem 2023; 259:115661. [PMID: 37482023 DOI: 10.1016/j.ejmech.2023.115661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Although the great effectiveness of doxorubicin (Dox) in the treatment of many types of tumors, it showed limited effectiveness against the head and neck squamous cell carcinoma (HNSCC) subtype which is attributed to its reported multiple drug resistance (MDR). In the current study, we considered the essential pharmacophoric features of Dox as an effective Top. II inhibitor and sought to develop a novel set of imidazo[1,2-a] [1,3,5]triazin-2-amines (2a-2p) as a suggested anticancer option that could intercalate the DNA base pairs. We evaluated the % inhibition of the newly synthesized compounds on thirteen cancer cell lines and the analysis of structure-activity relationships revealed that the human head and neck cancer cell line (HNO97) was the most sensitive to their growth inhibition effect. Then, the IC50 values were recorded against the most sensitive cancer cell lines (HNO97, MDA-MB-231, and HEPG2), and compared to the normal cell line OEC (human oral epithelial cells). Compounds 2f and 2g showed very strong activities against HNO97 with IC50 values of (4 ± 1 and 3 ± 1.5 μg/mL), respectively, compared to that of Dox (9 ± 1.6 μg/mL). Next, a quantitative determination of human DNA Top. II concentrations in the most sensitive cell line (HNO97) were recorded for the most active anticancer derivatives. Again, compound 2f showed a superior Top. II inhibition with 87.86% compared to that of Dox (86.44%), while compound 2g achieved an inhibition of 81.37% which was close to the effect of Dox. To further investigate their effects on cell cycle progression and apoptosis induction in HNO97 cells, both 2f and 2g were selected for analysis. Both candidates arrested cell cycle progression at both the S and G2-M phases, as well as increased the early and late apoptosis phase ratios. Besides, both 2f and 2g were subjected to protein expression analysis of apoptosis-related genes (p53, BAX, IL-6, and BCL2). Moreover, the antioxidant effect of 2f and 2g was evaluated by measuring GSH, MDA, and NO markers in HNO97 cells. Furthermore, molecular docking for the newly designed tricyclic derivatives against both the Top. II and DNA double helix was carried out.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt.
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, International Coastal Road, New Damietta, 34518, Egypt
| | - Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
3
|
Dib M, Justian N, Scharf C, Busch CJ, Burchardt M, Caetano-Pinto P. Recapitulating the Pharmacological Interactions of Cetuximab with Sunitinib and Cisplatin in Head and Neck Carcinoma Cells in vitro. Pharmacology 2022; 108:90-100. [PMID: 36273461 PMCID: PMC9811422 DOI: 10.1159/000527082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cisplatin is extensively used in the treatment of head and neck carcinomas. Cetuximab combination therapy is employed in recurrent and metastatic settings. Sunitinib showed positive results in the treatment of head and neck carcinomas, both as monotherapy or in combination with cetuximab. Nonetheless, the mechanism governing these pharmacological interactions is largely unresolved. This study investigates the impact of cetuximab on the cytotoxicity of cisplatin and sunitinib using cells representative of head and neck carcinoma and the oral epithelium. METHODS The uptake and efflux activities of cells were determined using the prototypical fluorescent substrates 4-[4-[dimethylamino]styryl)-1-methyl pyridinium iodide, Hoechst 33342, and calcein-AM in the presence or absence of specific inhibitors in cells pretreated with cetuximab. The expression of key uptake and efflux drug transporters was analyzed using qPCR and immunofluorescence. Cisplatin and sunitinib cytotoxicities after cetuximab pretreatment were evaluated using the PrestoBlue viability assay. RESULTS Both tumor and nontumor cells showed significant active drug transport activity. Cetuximab substantially deregulated the expression of key transporters involved in drug resistance in head and neck cancer cells. Transporter expression in the nontumor cell was unaffected. Upon cetuximab pretreatment, the half maximal effective toxic concentration of cisplatin was reduced by 0.75-fold and sunitinib by 0.82-fold in cancer cells. Nontumor cells were not sensitive to cisplatin or sunitinib under the conditions tested. CONCLUSION Cetuximab regulates the expression and activity of key membrane drug transporters in head and neck cancer cells, involved in drug resistance. The deregulation of the transport mechanism behind cisplatin and sunitinib uptake reverses drug resistance and enhances the cytotoxicity of both drugs.
Collapse
Affiliation(s)
- Maria Dib
- Department of Ear, Nose and Throat Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Nathanil Justian
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Scharf
- Department of Ear, Nose and Throat Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Chia-Jung Busch
- Department of Ear, Nose and Throat Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Pedro Caetano-Pinto
- Department of Urology, University Medicine Greifswald, Greifswald, Germany,*Pedro Caetano-Pinto,
| |
Collapse
|
4
|
Makita H, Endo K, Kasahara Y, Nakata A, Moriyama-Kita M, Ishikawa K, Ueno T, Nakanishi Y, Kondo S, Wakisaka N, Gotoh N, Yoshizaki T. Xenografts derived from patients with head and neck cancer recapitulate patient tumour properties. Oncol Lett 2021; 21:385. [PMID: 33777208 PMCID: PMC7988720 DOI: 10.3892/ol.2021.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Rodent models mimic the heterogeneity of head and neck cancer (HNC) malignancies and are used to investigate HNC-associated biomarkers and evaluate drug responses. To assess the utility of patient-derived xenografts (PDXs) as an HNC model, 18 tumour samples were obtained from surgical specimens of patients with HNC and implanted into non-obese diabetic severe combined immunodeficient mice. The histological features of PDXs and corresponding patient samples were compared. Furthermore, the present study investigated how PDX responses to anticancer drugs mimic patient clinical responses, as well as the expression of adenosine triphosphate-binding cassette transporters through chemotherapy in an HNC-PDX model. A total of five PDXs from patients with HNC exhibiting high correspondence with histopathological features of the original patient samples were established (establishment rate, 28%). The responses of three PDXs to cisplatin were associated with clinical responses of the patients. ABC transporter expression was augmented in one PDX model after anticancer drug treatment, but not in PBS-treated passaged PDXs. PDX models exhibited similar biological and chemosensitive characteristics to those of the primary tumours. PDXs could be a useful preclinical tool to test novel therapeutic agents and identify novel targets and biomarkers in HNC.
Collapse
Affiliation(s)
- Haruna Makita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuhira Endo
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Yoshiya Kasahara
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Asuka Nakata
- Department of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Makiko Moriyama-Kita
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuya Ishikawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Takayoshi Ueno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Yosuke Nakanishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Satoru Kondo
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naohiro Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Noriko Gotoh
- Department of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomokazu Yoshizaki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
5
|
Brands RC, De Donno F, Knierim ML, Steinacker V, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Multi-kinase inhibitors and cisplatin for head and neck cancer treatment in vitro. Oncol Lett 2019; 18:2220-2231. [PMID: 31452723 PMCID: PMC6676536 DOI: 10.3892/ol.2019.10541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) remains one of the major causes of suboptimal outcome following therapy in head and neck squamous cell carcinoma (HNSCC). ATP-binding cassette (ABC) transporters are overexpressed in HNSCC, which contributes to the limited effect of chemotherapeutic treatment. In addition to their named function, tyrosine kinase inhibitors (TKIs) have been revealed to impact on ABC transporter activity and expression. Therefore, the present study aimed to investigate the effects of combination therapy using different TKIs combined with cisplatin. Reverse transcription-quantitative PCR was used to characterize ABC transporter and receptor expression in 5 HNSCC cell lines treated with 3 different TKIs (pazopanib, dovitinib, nintedanib) and cisplatin. Treatment efficacy was analyzed using a crystal violet staining assay. Analysis of ABC transporter (ABCB1, ABCC1 and ABCG2) genetic alterations was performed using The Cancer Genome Atlas. Statistical analysis was conducted to evaluate the effects of mono- and combination treatment. With the exception of ABCB1, all of the investigated ABC transporters were expressed in each cell line. The additive effects of TKI + cisplatin combination treatment were observed for pazopanib in three cell lines, nintedanib in four cell lines, and were not observed for dovitinib in any of the cell lines investigated. The combination of multi-kinase inhibitors and conventional chemotherapy in HNSCC may strengthen the use of current therapeutic strategies; nintedanib appears to be the most suitable TKI for combination therapy. Further efforts are required to classify TKI efficacy with regard to cisplatin resistance.
Collapse
Affiliation(s)
- Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Francesco De Donno
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Marie Luise Knierim
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Valentin Steinacker
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany.,Interdisciplinary Center for Clinical Research, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| | - Urs D A Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
6
|
Berveiller P, Mir O, Degrelle SA, Tsatsaris V, Selleret L, Guibourdenche J, Evain-Brion D, Fournier T, Gil S. Chemotherapy in pregnancy: exploratory study of the effects of paclitaxel on the expression of placental drug transporters. Invest New Drugs 2018; 37:1075-1085. [PMID: 30367323 DOI: 10.1007/s10637-018-0677-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
Abstract
Introduction The use of paclitaxel in pregnant cancer patients is feasible in terms of fetal safety, but little is known about the effects of paclitaxel on the placenta. Using three experimental models, we aimed to assess the effects of paclitaxel on the expression of placental drug transporters. Methods In the in vitro model (human primary trophoblast culture), trophoblasts were isolated from normal term placentas and subsequently exposed to paclitaxel. The transcriptional regulation of 84 genes encoding for drug transporters, and the protein expression of ABCB1/P-gp and ABCG2/BCRP were assessed. In the in vivo model, placental tissues isolated from pregnant cancer patients treated with paclitaxel were analyzed to assess the protein expression of ABCB1/P-gp and ABCG2/BCRP. The same parameters were assessed in extracts from human placental cotyledons perfused ex vivo with paclitaxel. Results In the in vitro model, the expression of twelve drug-transporters genes was found to be significantly down-regulated after exposure to paclitaxel, including ABCC10, SLC28A3, SLC29A2, and ATP7B (involved in the transport of taxanes, antimetabolites, and cisplatin, respectively). The protein expression of ABCB1/P-gp increased by 1.3-fold after paclitaxel administration. Finally, the protein expression of ABCB1/P-gp and ABCG2/BCRP was higher in cotyledons from mothers treated with multiple doses of paclitaxel during pregnancy than in cotyledons perfused with a single dose of paclitaxel. Discussion Paclitaxel modulates the expression of placental drug transporters involved in the disposition of various anticancer agents. Further studies will be needed to assess the impact of repeated or prolonged exposure to paclitaxel on the expression and function of placental drug transporters.
Collapse
Affiliation(s)
- Paul Berveiller
- INSERM, UMR-S1139, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
- Department of Gynecology and Obstetrics, Centre Hospitalier Intercommunal de Poissy Saint Germain, 10, rue du champ Gaillard, F78300, Poissy, France.
| | - Olivier Mir
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Séverine A Degrelle
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vassilis Tsatsaris
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Department of Obstetrics, Port-Royal Maternity, Cochin Teaching Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
- PremUp Foundation, Paris, France
| | - Lise Selleret
- Department of Obstetrics and Gynecology, Tenon Teaching Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jean Guibourdenche
- Department of Hormonal Biology, Cochin Teaching Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Danièle Evain-Brion
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUp Foundation, Paris, France
| | - Thierry Fournier
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUp Foundation, Paris, France
| | - Sophie Gil
- INSERM, UMR-S1139, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUp Foundation, Paris, France
| |
Collapse
|
7
|
Human papilloma virus (HPV) 18 proteins E6 and E7 up-regulate ABC transporters in oropharyngeal carcinoma. Involvement of the nonsense-mediated decay (NMD) pathway. Cancer Lett 2018; 428:69-76. [PMID: 29715486 DOI: 10.1016/j.canlet.2018.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
Abstract
Oropharyngeal cancer incidence increased dramatically in the last decades, being infection with human papillomaviruses (HPV) a determinant of this trend. Concerning etiology, treatment response and prognosis, HPV+ and HPV- oropharyngeal cancers constitute different disease entities. The underlying molecular background is not completely understood. ATP-binding cassette (ABC) transporters mediate the efflux of anticancer drugs and are regulated by changes in the intracellular milieu. Furthermore, a role in cancer pathogenesis besides drug transport was reported. We evaluated the effect of transfection with E6 and E7 oncogenes from HPV16 and HPV18 on ABC transporters in oropharyngeal cancer cells. HPV18E6/E7 up-regulated P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and MRP2 expression in HNO206 cells and breast cancer resistance protein (BCRP) in HNO206 and HNO413 cells. While P-gp was regulated translationally, MRP1, MRP2 and BCRP up-regulation resulted from mRNA stabilization. For MRP1 and MRP2, the nonsense-mediated decay pathway was involved. In general, resistance to substrates of up-regulated transporters was increased. Transfection with oncogenes individually indicated a major role of HPV18E7. Our findings suggest ABC transporters as molecular players leading to differences in the pathogenesis of HPV+ and HPV- oropharyngeal cancer.
Collapse
|
8
|
FOLFOX+Nab-Paclitaxel (FOLFOX-A) for Advanced Pancreatic Cancer: A Brown University Oncology Research Group Phase I Study. Am J Clin Oncol 2017; 39:619-622. [PMID: 26523444 DOI: 10.1097/coc.0000000000000246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The Brown University Oncology Research Group performed a phase I study to remove irinotecan from FOLFIRINOX (5-fluorouracil, oxaliplatin, irinotecan, and leucovorin) and substitute nab-paclitaxel. METHODS Patients with newly diagnosed advanced pancreatic adenocarcinoma were eligible. Patients received oxaliplatin 85 mg/m, leucovorin 400 mg/m, and 5-fluorouracil 2400 mg/m with 3 dose levels of nab-paclitaxel (125, 150, and 175 mg/m) every 2 weeks. Dose-limiting toxicities were assessed in the first 2 cycles of treatment. The final dose level was expanded to assess cumulative neurotoxicity. RESULTS Thirty-five patients were entered; 24 with metastatic and 11 with locally advanced pancreatic cancer. The maximum tolerated dose of nab-paclitaxel was 150 mg/m every 2 weeks with FOLFOX. Cumulative neuropathy was the most important toxicity. Grade 3 neuropathy developed in 2 of the first 6 patients at 10 and 11 cycles of FOLFOX-A. Following an amendment to reduce oxaliplatin to 65 mg/m if grade 2 neuropathy developed, no additional patients developed grade 3 neurotoxicity. Twenty-one of 35 patients (60%) had a partial response. The median survival for patients with metastatic disease was 15 months. CONCLUSIONS The maximum tolerated dose of nab-paclitaxel is 150 mg/m every 2 weeks with FOLFOX. The regimen of FOLFOX-A represents a promising treatment for pancreatic cancer.
Collapse
|