1
|
Mauro S, Bolognesi MM, Villa N, Capitoli G, Furia L, Mascadri F, Zucchini N, Totis M, Faretta M, Galimberti S, Bovo G, Cattoretti G. A DNA damage response-like phenotype defines a third of colon cancers at onset. FASEB J 2023; 37:e23020. [PMID: 37342943 DOI: 10.1096/fj.202300132r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/12/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Colon adenocarcinoma (COAD) has a limited range of diversified, personalized therapeutic opportunities, besides DNA hypermutating cases; thus, both new targets or broadening existing strategies for personalized intervention are of interest. Routinely processed material from 246 untreated COADs with clinical follow-up was probed for evidence of DNA damage response (DDR), that is, the gathering of DDR-associated molecules at discrete nuclear spots, by multiplex immunofluorescence and immunohistochemical staining for DDR complex proteins (γH2AX, pCHK2, and pNBS1). We also tested the cases for type I interferon response, T-lymphocyte infiltration (TILs), and mutation mismatch repair defects (MMRd), known to be associated with defects of DNA repair. FISH analysis for chromosome 20q copy number variations was obtained. A total of 33.7% of COAD display a coordinated DDR on quiescent, non-senescent, non-apoptotic glands, irrespective of TP53 status, chromosome 20q abnormalities, and type I IFN response. Clinicopathological parameters did not differentiate DDR+ cases from the other cases. TILs were equally present in DDR and non-DDR cases. DDR+ MMRd cases were preferentially retaining wild-type MLH1. The outcome after 5FU-based chemotherapy was not different in the two groups. DDR+ COAD represents a subgroup not aligned with known diagnostic, prognostic, or therapeutic categories, with potential new targeted treatment opportunities, exploiting the DNA damage repair pathways.
Collapse
Affiliation(s)
- Stefania Mauro
- Pathology, Vimercate Hospital, ASST-Brianza, Vimercate, Italy
| | - Maddalena M Bolognesi
- Pathology, Department of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| | - Nicoletta Villa
- Genetics, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Mascadri
- Pathology, Department of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| | - Nicola Zucchini
- Pathology, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| | - Mauro Totis
- GI Surgery, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
| | - Giorgio Bovo
- Pathology, Vimercate Hospital, ASST-Brianza, Vimercate, Italy
| | - Giorgio Cattoretti
- Pathology, Department of Medicine and Surgery, Universitá di Milano-Bicocca, Monza, Italy
- Pathology, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
| |
Collapse
|
2
|
Wang H, Tian Q, Xu Z, Du M, Zhu MJ. Metabolomic profiling for the preventive effects of dietary grape pomace against colorectal cancer. J Nutr Biochem 2023; 116:109308. [PMID: 36868505 DOI: 10.1016/j.jnutbio.2023.109308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most common and deadly cancers worldwide. Grape pomace (GP) is a rich source of bioactive compounds with anti-inflammatory, and anticancer effects. We recently found that dietary GP had protective effects against CRC development in the azoxymethane (AOM)/dextran sulfate sodium (DSS) CRC mouse model through suppression of cell proliferation and modulation of DNA methylation. However, the underlying molecular mechanisms associated with changes in metabolites remain unexamined. This study profiled fecal metabolomic changes in a mouse CRC model in response to GP supplementation using gas chromatography-mass spectrometry (GC-MS) based metabolomic analysis. A total of 29 compounds showed significant changes due to GP supplementation, including bile acids, amino acids, fatty acids, phenols/flavonoids, glycerolipids, carbohydrates, organic acids, and others. The major changes in metabolites of feces include increased deoxycholic acid (DCA) and decreased amino acid content. Dietary GP upregulated the expression of farnesoid X receptor (FXR) downstream genes while decreasing fecal urease activity. DNA repair enzyme MutS Homolog 2 (MSH2) was upregulated by GP supplementation. Consistently, γ-H2AX, as a DNA damage marker, decreased in GP supplemented mice. Moreover, MDM2, a protein in the ataxia telangiectasia mutated (ATM) signaling, was decreased by GP supplementation. These data provided valuable metabolic clues for unraveling the protective effects of GP supplementation against CRC development.
Collapse
Affiliation(s)
- Hongbin Wang
- School of Food Science, Washington State University, Pullman, WA 99164, USA,; Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qiyu Tian
- School of Food Science, Washington State University, Pullman, WA 99164, USA,; Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Zhixin Xu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA,.
| |
Collapse
|
3
|
Jiang A, Song J, Fang X, Fang Y, Wang Z, Liu B, Wu Z, Qu L, Luo P, Wang L. A novel thinking: DDR axis refines the classification of ccRCC with distinctive prognosis, multi omics landscape and management strategy. Front Public Health 2022; 10:1029509. [PMID: 36478716 PMCID: PMC9720257 DOI: 10.3389/fpubh.2022.1029509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background DNA damage response and repair (DDR) related signatures play an important role in maintaining genome stability and other biological processes. It also affects the occurrence, development, and treatment of cancer. However, in renal cell carcinoma (RCC), especially clear cell renal carcinoma (ccRCC), the potential association between DDR-related signatures and tumor heterogeneity and tumor microenvironment (TME) remains unclear. Methods Utilizing unsupervised clustering algorithm, we divided RCC into two subgroups, DCS1 and DCS2, according to the differences in DDR gene expression, and compared the characteristics of the two subgroups through multiple dimensions. Results Compared with DCS1, DCS2 patients have higher clinical stage/grade and worse prognosis, which may be related to active metabolic status and immunosuppression status. At the same time, the high mutation rate in DCS2 may also be an important reason for the prognosis. We also analyzed the sensitivity of the two subgroups to different therapeutic agents and established a subtypes' biomarkers-based prognostic system with good validation results to provide ideas for clinical diagnosis and treatment. Finally, we identified a pivotal role for DDX1 in the DDR gene set, which may serve as a future therapeutic target. Conclusion This study showed that DDR has an important impact on the development and treatment of RCC. DCS2 subtypes have a poor prognosis, and more personalized treatment and follow-up programs may be needed. The assessment of DDR gene mutations in patients may be helpful for clinical decision-making. DDX1 may be one of the effective targets for RCC treatment in the future.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Jiaao Song
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Xiao Fang
- Department of Urology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Zheng Wang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhenjie Wu
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Le Qu
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Peng Luo
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai, China,Linhui Wang
| |
Collapse
|
4
|
Orange ST, Jordan AR, Odell A, Kavanagh O, Hicks KM, Eaglen T, Todryk S, Saxton JM. Acute aerobic exercise-conditioned serum reduces colon cancer cell proliferation through IL-6-induced regulation of DNA damage in vitro. Int J Cancer 2022; 151:265-274. [PMID: 35213038 PMCID: PMC9314683 DOI: 10.1002/ijc.33982] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/07/2022]
Abstract
Epidemiological evidence shows that regular physical activity is associated with reduced risk of primary and recurrent colon cancer. However, the underlying mechanisms of action are poorly understood. We evaluated the effects of stimulating a human colon cancer cell line (LoVo) with human serum collected before and after an acute exercise bout vs non-exercise control serum on cancer cell proliferation. We also measured exercise-induced changes in serum cytokines and intracellular protein expression to explore potential biological mechanisms. Blood samples were collected from 16 men with lifestyle risk factors for colon cancer (age ≥ 50 years; body mass index ≥25 kg/m2 ; physically inactive) before and immediately after an acute bout of moderate-intensity aerobic interval exercise (6 x 5 min intervals at 60% heart rate reserve) and a non-exercise control condition. Stimulating LoVo cells with serum obtained immediately after exercise reduced cancer cell proliferation compared with control (-5.7%; P = 0.002). This was accompanied by a decrease in LoVo cell γ-H2AX expression (-24.6%; P = 0.029), indicating a reduction in DNA damage. Acute exercise also increased serum IL-6 (24.6%, P = 0.002). Furthermore, stimulating LoVo cells with recombinant IL-6 reduced γ-H2AX expression (β = -22.7%; P < 0.001) and cell proliferation (β = -5.3%; P < 0.001) in a linear dose-dependent manner, mimicking the effect of exercise. These findings suggest that the systemic responses to acute aerobic exercise inhibit colon cancer cell proliferation in vitro, and this may be driven by IL-6-induced regulation of DNA damage and repair. This mechanism of action may partly underlie epidemiological associations linking regular physical activity with reduced colon cancer risk. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samuel T Orange
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Alistair R Jordan
- School of Science, Technology and Health, York St John University, York, UK
| | - Adam Odell
- School of Science, Technology and Health, York St John University, York, UK
| | - Owen Kavanagh
- School of Science, Technology and Health, York St John University, York, UK
| | - Kirsty M Hicks
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle upon Tyne, UK
| | - Tristan Eaglen
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle upon Tyne, UK
| | - Stephen Todryk
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, UK
| | - John M Saxton
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle upon Tyne, UK.,Department of Sport, Health and Exercise Science, Faculty of Health Sciences, University of Hull, UK
| |
Collapse
|
5
|
Ozawa N, Yokobori T, Osone K, Katayama C, Suga K, Komine C, Shibasaki Y, Shiraishi T, Okada T, Kato R, Ogawa H, Sano A, Sakai M, Sohda M, Ojima H, Miyazaki T, Motegi Y, Ide M, Yao T, Kuwano H, Shirabe K, Saeki H. PD-L1 upregulation is associated with activation of the DNA double-strand break repair pathway in patients with colitic cancer. Sci Rep 2021; 11:13077. [PMID: 34158547 PMCID: PMC8219733 DOI: 10.1038/s41598-021-92530-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is a DNA damage-associated chronic inflammatory disease; the DNA double-strand break (DSB) repair pathway participates in UC-associated dysplasia/colitic cancer carcinogenesis. The DSB/interferon regulatory factor-1 (IRF-1) pathway can induce PD-L1 expression transcriptionally. However, the association of PD-L1/DSB/IRF-1 with sporadic colorectal cancer (SCRC), and UC-associated dysplasia/colitic cancer, remains elusive. Therefore, we investigated the significance of the PD-L1/DSB repair pathway using samples from 17 SCRC and 12 UC patients with rare UC-associated dysplasia/colitic cancer cases by immunohistochemical analysis. We compared PD-L1 expression between patients with SCRC and UC-associated dysplasia/colitic cancer and determined the association between PD-L1 and the CD8+ T-cell/DSB/IRF-1 axis in UC-associated dysplasia/colitic cancer. PD-L1 expression in UC and UC-associated dysplasia/colitic cancer was higher than in normal mucosa or SCRC, and in CD8-positive T lymphocytes in UC-associated dysplasia/colitic cancer than in SCRC. Moreover, PD-L1 upregulation was associated with γH2AX (DSB marker) and IRF-1 upregulation in UC-associated dysplasia/colitic cancer. IRF-1 upregulation was associated with γH2AX upregulation in UC-associated dysplasia/colitic cancer but not in SCRC. Multicolour immunofluorescence staining validated γH2AX/IRF-1/PD-L1 co-expression in colitic cancer tissue sections. Thus, immune cell-induced inflammation might activate the DSB/IRF-1 axis, potentially serving as the primary regulatory mechanism of PD-L1 expression in UC-associated carcinogenesis.
Collapse
Affiliation(s)
- Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Chika Katayama
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Kunihiko Suga
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Chika Komine
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Yuta Shibasaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ryuji Kato
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hitoshi Ojima
- Department of Gastroenterological Surgery, Gunma Prefectural Cancer Center, Ohta, Gunma, Japan
| | - Tatsuya Miyazaki
- Department of Gastroenterological Surgery, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Yoko Motegi
- Department of Gastroenterological Surgery, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Munenori Ide
- Department of Pathology Diagnosis, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Takashi Yao
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Bunkyo City, Tokyo, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
6
|
Krishnan V, Lim DXE, Hoang PM, Srivastava S, Matsuo J, Huang KK, Zhu F, Ho KY, So JBY, Khor C, Tsao S, Teh M, Fock KM, Ang TL, Jeyasekharan AD, Tan P, Yeoh KG, Ito Y. DNA damage signalling as an anti-cancer barrier in gastric intestinal metaplasia. Gut 2020; 69:1738-1749. [PMID: 31937549 PMCID: PMC7497583 DOI: 10.1136/gutjnl-2019-319002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intestinal metaplasia (IM) is a premalignant stage that poses a greater risk for subsequent gastric cancer (GC). However, factors regulating IM to GC progression remain unclear. Previously, activated DNA damage response (DDR) signalling factors were shown to engage tumour-suppressive networks in premalignant lesions. Here, we interrogate the relationship of DDR signalling to mutational accumulation in IM lesions. DESIGN IM biopsies were procured from the gastric cancer epidemiology programme, an endoscopic surveillance programme where biopsies have been subjected to (epi)genomic characterisation. IM samples were classified as genome-stable or genome-unstable based on their mutational burden/somatic copy-number alteration (CNA) profiles. Samples were probed for DDR signalling and cell proliferation, using the markers γH2AX and MCM2, respectively. The expression of the gastric stem cell marker, CD44v9, was also assessed. Tissue microarrays representing the GC progression spectrum were included. RESULTS MCM2-positivity increased during GC progression, while γH2AX-positivity showed modest increase from normal to gastritis and IM stages, with further increase in GC. γH2AX levels correlated with the extent of chronic inflammation. Interestingly, genome-stable IM lesions had higher γH2AX levels underscoring a protective anti-cancer role for DDR signalling. In contrast, genome-unstable IM lesions with higher mutational burden/CNAs had lower γH2AX levels, elevated CD44v9 expression and modest promoter hypermethylation of DNA repair genes WRN, MLH1 and RAD52. CONCLUSIONS Our data suggest that IM lesions with active DDR will likely experience a longer latency at the premalignant state until additional hits that override DDR signalling clonally expand and promote progression. These observations provide insights on the factors governing IM progression.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Debbie Xiu En Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Supriya Srivastava
- Department of Pathology, National University of Singapore, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Khek Yu Ho
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Jimmy Bok Yan So
- Department of Surgery, National University of Singapore, Singapore,Singapore Gastric Cancer Consortium, Singapore
| | - Christopher Khor
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore
| | - Stephen Tsao
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Kwong Ming Fock
- Department of Gastroenterology, Changi General Hospital, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology, Changi General Hospital, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore,Singapore Gastric Cancer Consortium, Singapore
| | - Khay-Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore .,Department of Gastroenterology and Hepatology, National University Health System, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore .,Singapore Gastric Cancer Consortium, Singapore
| |
Collapse
|
7
|
Guo P, Tian Z, Kong X, Yang L, Shan X, Dong B, Ding X, Jing X, Jiang C, Jiang N, Yu Y. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:202. [PMID: 32993749 PMCID: PMC7523382 DOI: 10.1186/s13046-020-01677-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Background Globally, colorectal cancer (CRC) affects more than 1 million people each year. In addition to non-modifiable and other environmental risk factors, Fusobacterium nucleatum infection has been linked to CRC recently. In this study, we explored mechanisms underlying the role of Fusobacterium nucleatum infection in the progression of CRC in a mouse model. Methods C57BL/6 J-Adenomatous polyposis coli (APC) Min/J mice [APC (Min/+)] were treated with Fusobacterium nucleatum (109 cfu/mL, 0.2 mL/time/day, i.g., 12 weeks), saline, or FadA knockout (FadA−/−) Fusobacterium nucleatum. The number, size, and weight of CRC tumors were determined in isolated tumor masses. The human CRC cell lines HCT29 and HT116 were treated with lentiviral vectors overexpressing chk2 or silencing β-catenin. DNA damage was determined by Comet assay and γH2AX immunofluorescence assay and flow cytometry. The mRNA expression of chk2 was determined by RT-qPCR. Protein expression of FadA, E-cadherin, β-catenin, and chk2 were determined by Western blot analysis. Results Fusobacterium nucleatum treatment promoted DNA damage in CRC in APC (Min/+) mice. Fusobacterium nucleatum also increased the number of CRC cells that were in the S phase of the cell cycle. FadA−/− reduced tumor number, size, and burden in vivo. FadA−/− also reduced DNA damage, cell proliferation, expression of E-cadherin and chk2, and cells in the S phase. Chk2 overexpression elevated DNA damage and tumor growth in APC (Min/+) mice. Conclusions In conclusion, this study provided evidence that Fusobacterium nucleatum induced DNA damage and cell growth in CRC through FadA-dependent activation of the E-cadherin/β-catenin pathway, leading to up-regulation of chk2.
Collapse
Affiliation(s)
- Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Xinjuan Kong
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Lin Yang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Xinzhi Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Xueli Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Chen Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Na Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China.
| |
Collapse
|
8
|
Kawashima S, Kawaguchi N, Taniguchi K, Tashiro K, Komura K, Tanaka T, Inomata Y, Imai Y, Tanaka R, Yamamoto M, Inoue Y, Lee SW, Kawai M, Tanaka K, Okuda J, Uchiyama K. γ-H2AX as a potential indicator of radiosensitivity in colorectal cancer cells. Oncol Lett 2020; 20:2331-2337. [PMID: 32782550 PMCID: PMC7400563 DOI: 10.3892/ol.2020.11788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/21/2020] [Indexed: 11/08/2022] Open
Abstract
Preoperative radiotherapy improves local disease control and disease-free survival in patients with advanced rectal cancer; however, a reliable predictive biomarker for the effectiveness of irradiation has yet to be elucidated. Phosphorylation of H2A histone family member X (H2AX) to γ-H2AX is induced by DNA double-strand breaks and is associated with the development of colorectal cancer (CRC). The current study aimed to clarify the relationship between γ-H2AX expression and CRC radiosensitivity in vitro and in vivo. H2AX levels were analyzed in datasets obtained from cohort studies and γ-H2AX expression was investigated by performing immunohistochemistry and western blotting using clinical CRC samples from patients without any preoperative therapy. In addition, the CRC cell lines WiDr and DLD-1 were subjected to irradiation and/or small interfering RNA-H2AX, after which the protein levels of γ-H2AX were examined in samples obtained from patients undergoing preoperative chemoradiotherapy. To quantify the observable effect of treatment on cancer cells, outcomes were graded as follows: 1, mild; 2, moderate; and 3, marked, with defined signatures of cellular response. Datasets obtained from cohort studies demonstrated that H2AX mRNA levels were significantly upregulated and associated with distal metastasis and microsatellite instability in CRC tissues, in contrast to that of normal tissues. In addition, γ-H2AX was overexpressed in clinical samples. In vitro, following irradiation, γ-H2AX expression levels increased and cell viability decreased in a time-dependent manner. Combined irradiation and γ-H2AX knockdown reduced the viability of each cell line when compared with irradiation or γ-H2AX knockdown alone. Furthermore, among clinical CRC samples from patients undergoing preoperative chemoradiotherapy, levels of γ-H2AX in the grade 1 group were significantly higher than those in grade 2 or grade 3. In conclusion, γ-H2AX may serve as a novel predictive marker and target for preoperative radiotherapy effectiveness in patients with CRC.
Collapse
Affiliation(s)
- Satoshi Kawashima
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Nao Kawaguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan.,Translational Research Program, Osaka Medical College, Osaka 569-8686, Japan
| | - Keitaro Tashiro
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Kazumasa Komura
- Translational Research Program, Osaka Medical College, Osaka 569-8686, Japan
| | - Tomohito Tanaka
- Translational Research Program, Osaka Medical College, Osaka 569-8686, Japan
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Yoshiro Imai
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Ryo Tanaka
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Masashi Yamamoto
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Yoshihiro Inoue
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Masaru Kawai
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Keitaro Tanaka
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| | - Junji Okuda
- Department of Advanced Medical Development, Osaka Medical College Hospital Cancer Center, Osaka 569-8686, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Osaka 569-8686, Japan
| |
Collapse
|
9
|
Ho V, Chung L, Singh A, Lea V, Abubakar A, Lim SH, Chua W, Ng W, Lee M, Roberts TL, de Souza P, Lee CS. Aberrant Expression of RAD52, Its Prognostic Impact in Rectal Cancer and Association with Poor Survival of Patients. Int J Mol Sci 2020; 21:ijms21051768. [PMID: 32143539 PMCID: PMC7084626 DOI: 10.3390/ijms21051768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
The DNA damage response enables cells to survive and maintain genome integrity. RAD52 is a DNA-binding protein involved in the homologous recombination in DNA repair, and is important for the maintenance of tumour genome integrity. We investigated possible correlations between RAD52 expression and cancer survival and response to preoperative radiotherapy. RAD52 expression was examined in tumour samples from 179 patients who underwent surgery for rectal cancer, including a sub-cohort of 40 patients who were treated with neoadjuvant therapy. A high score for RAD52 expression in the tumour centre was significantly associated with worse disease-free survival (DFS; p = 0.045). In contrast, reduced RAD52 expression in tumour centre samples from patients treated with neoadjuvant therapy (n = 40) significantly correlated with poor DFS (p = 0.025) and overall survival (OS; p = 0.048). Our results suggested that RAD52 may have clinical value as a prognostic marker of tumour response to neoadjuvant radiation and both disease-free status and overall survival in patients with rectal cancer.
Collapse
Affiliation(s)
- Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Correspondence: ; Tel.: +61-2-4620-3845; Fax: +61-2-4520-3116
| | - Liping Chung
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
| | - Amandeep Singh
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (A.S.); (V.L.)
| | - Vivienne Lea
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (A.S.); (V.L.)
| | - Askar Abubakar
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
| | - Stephanie H. Lim
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, NSW 2560, Australia
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Wei Chua
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Weng Ng
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Tara L. Roberts
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (L.C.); (A.A.); (T.L.R.); (P.d.S.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.H.L.); (W.C.)
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia; (A.S.); (V.L.)
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
10
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
TIF1β is phosphorylated at serine 473 in colorectal tumor cells through p38 mitogen-activated protein kinase as an oxidative defense mechanism. Biochem Biophys Res Commun 2017; 492:310-315. [DOI: 10.1016/j.bbrc.2017.08.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/27/2017] [Indexed: 11/30/2022]
|
12
|
Chung HJ, Korm S, Lee SI, Phorl S, Noh S, Han M, Naskar R, Kim H, Lee JY. RAP80 binds p32 to preserve the functional integrity of mitochondria. Biochem Biophys Res Commun 2017; 492:441-446. [PMID: 28842250 DOI: 10.1016/j.bbrc.2017.08.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/20/2017] [Indexed: 01/07/2023]
Abstract
RAP80, a member of the BRCA1-A complex, is a well-known crucial regulator of cell cycle checkpoint and DNA damage repair in the nucleus. However, it is still unclear whether Rap80 localizes to another region outside the nucleus and plays different roles with its partners. Here, we found mitochondrial p32 as a novel binding partner of RAP80 by using yeast two-hybrid screening. RAP80 directly binds the internal region of p32 through its arginine rich C-terminal domain. Based on the interaction, we showed that a subset of RAP80 localizes to mitochondria where p32 exists. Loss of function study revealed that RAP80 deficiency reduces the protein level of p32 and p32 dependent mitochondrial translating proteins such as Rieske and COX1. As a result, mitochondrial membrane potential and oxygen consumption are reduced in RAP80 knockdown cells, indicating mitochondrial dysfunction. Our study identifies a novel interaction between RAP80 and p32, which is important for preserving intact mitochondrial function.
Collapse
Affiliation(s)
- Hee Jin Chung
- Department of Biological Science, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea
| | - Sovannarith Korm
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Se-In Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Sophors Phorl
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Solhee Noh
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Miae Han
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Rema Naskar
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Hongtae Kim
- Department of Biological Science, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea.
| | - Joo-Yong Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
13
|
Diniz MG, Guimarães BVA, Pereira NB, de Menezes GHF, Gomes CC, Gomez RS. DNA damage response activation and cell cycle dysregulation in infiltrative ameloblastomas: A proposed model for ameloblastoma tumor evolution. Exp Mol Pathol 2017; 102:391-395. [DOI: 10.1016/j.yexmp.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
14
|
Wang H, Zhou J, He Q, Dong Y, Liu Y. Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer. Mol Med Rep 2017; 15:4055-4060. [PMID: 28487971 PMCID: PMC5436214 DOI: 10.3892/mmr.2017.6549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Esophageal cancer is one of the most common type of malignancies. Telomerase activity, which is absent or weakly detected in the majority of human somatic cells, is elevated in esophageal cancer. Although azidothymidine (AZT), a reverse transcriptase inhibitor, has been utilized as a treatment for tumors, its role in treating esophageal cancer has not been confirmed. The aim of the present study was to determine the effect of AZT on telomerase activity and the proliferation of the human esophageal cancer cell line TE-11. A telomeric repeat amplification assay was utilized to detect telomerase activity following treatment of TE-11 cells with AZT. The effect of AZT on TE-11 cell cycle distribution was determined by flow cytometry. Cellular DNA damage was evaluated by a comet assay and an MTT assay demonstrated that AZT significantly inhibited the viability of TE-11 cells, in a time-and dose-dependent manner. In addition, TE-11 cells treated with various concentrations of AZT exhibited a significant reduction in telomerase activity and percentage of cells in the G1/G0 phase, and an increase in the percentage of cells in the S phase. High doses of AZT caused DNA damage, and enhanced the expression levels of γ-H2A histone family member X and phosphorylated checkpoint kinase 2 in TE-11 cells. These results demonstrated that AZT effectively inhibits proliferation of the TE-11 human esophageal cancer cell line in vitro. The growth inhibitory effects were associated with a reduction in telomerase activity, S and G2/M phase cell cycle arrest, and enhanced DNA damage, suggesting that AZT may be utilized in the clinic for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Haoli Wang
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510080, P.R. China
| | - Jianwen Zhou
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qiong He
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Dong
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanhui Liu
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
15
|
The Expression and Clinical Outcome of pCHK2-Thr68 and pCDC25C-Ser216 in Breast Cancer. Int J Mol Sci 2016; 17:ijms17111803. [PMID: 27801830 PMCID: PMC5133804 DOI: 10.3390/ijms17111803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 02/08/2023] Open
Abstract
Checkpoint kinase 2 (CHK2) and cell division cycle 25C (CDC25C) are two proteins involved in the DNA damage response pathway, playing essential roles in maintaining genome integrity. As one of the major hallmarks of abnormal cellular division, genomic instability occurs in most cancers. In this study, we identified the functional expression of pCHK2-Thr68 and pCDC25C-Ser216 in breast cancer, as well as its association with breast cancer survival. Tissue microarray analysis using immunohistochemistry was constructed to identify the expression of pCHK2-Thr68 and pCDC25C-Ser216 in 292 female breast cancer patients. The relationship among protein expression, clinicopathological factors (e.g., human epidermal growth factor receptor 2 (HER 2), tumor size, tumor-node-metastasis (TNM) classification), and overall survival of the breast cancer tissues were analyzed using Pearson’s χ-square (χ2) test, Fisher’s exact test, multivariate logistic regression and Kaplan–Meier survival analysis. Significantly higher expressions of pCHK2-Thr68 and pCDC25C-Ser216 were observed in the nucleus of the breast cancer cells compared to the paracancerous tissue (pCHK2-Thr68, 20.38% vs. 0%; pCDC25C-Ser216, 82.26% vs. 24.24%). The expression of pCHK2-Thr68 and pCDC25C-Ser216 in breast cancer showed a positive linear correlation (p = 0.026). High expression of pCHK2-Thr68 was associated with decreased patient survival (p = 0.001), but was not an independent prognostic factor. Our results suggest that pCHK2-Thr68 and pCDC25C-Ser216 play important roles in breast cancer and may be potential treatment targets.
Collapse
|
16
|
Chiu SH, Wu CC, Fang CY, Yu SL, Hsu HY, Chow YH, Chen JY. Epstein-Barr virus BALF3 mediates genomic instability and progressive malignancy in nasopharyngeal carcinoma. Oncotarget 2015; 5:8583-601. [PMID: 25261366 PMCID: PMC4226706 DOI: 10.18632/oncotarget.2323] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer prevalent throughout Southern China and Southeast Asia. Patient death following relapse after primary treatment remains all too common but the cause of NPC relapse is unclear. Clinical and epidemiological studies have revealed the high correlation among NPC development, Epstein-Barr virus (EBV) reactivation and host genomic instability. Previously, recurrent EBV reactivation was shown to cause massive genetic alterations and enhancement of tumor progression in NPC cells and these may be required for NPC relapse. Here, EBV BALF3 has the ability to induce micronuclei and DNA strand breaks. After recurrent expression of BALF3 in NPC cells, genomic copy number aberrations, determined by array-based comparative genomic hybridization, had accumulated to a significant extent and tumorigenic features, such as cell migration, cell invasion and spheroid formation, increased with the rounds of induction. In parallel experiments, cells after highly recurrent induction developed into larger tumor nodules than control cells when inoculated into NOD/SCID mice. Furthermore, RNA microarrays showed that differential expression of multiple cancer capability-related genes and oncogenes increased with recurrent BALF3 expression and these changes correlated with genetic aberrations. Therefore, EBV BALF3 is a potential factor that mediates the impact of EBV on NPC relapse.
Collapse
Affiliation(s)
- Shih-Hsin Chiu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan. National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Ling Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Yang Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan. National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
17
|
Khanna A. DNA Damage in Cancer Therapeutics: A Boon or a Curse? Cancer Res 2015; 75:2133-8. [DOI: 10.1158/0008-5472.can-14-3247] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
|
18
|
Hu JL, Hu SS, Hou XX, Zhu X, Cao J, Jiang LH, Ge MH. Abnormal Expression of DNA Double-Strand Breaks Related Genes, ATM and GammaH2AX, in Thyroid Carcinoma. Int J Endocrinol 2015; 2015:136810. [PMID: 25861265 PMCID: PMC4378699 DOI: 10.1155/2015/136810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
ATM and γH2AX play a vital role in the detection of DNA double-strand breaks (DSB) and DNA damage response (DDR). This study aims to investigate ATM and γH2AX expression in thyroid cancer and discuss possible relationship between thyroid function tests and DNA damage. The expression of ATM and γH2AX was detected by immunohistochemistry in 30 cases of benign nodular goiter, 110 cases of well differentiated thyroid cancer, 22 cases of poorly differentiated thyroid cancer, and 21 cases of anaplastic thyroid cancer. Clinicopathological features, including differentiation stages, distant metastasis, lymph node metastasis, T classification, TNM stage, and tests of thyroid functions (TPOAb, Tg Ab, T3, FT3, T4, FT4, TSH, and Tg), were reviewed and their associations with γH2AX and ATM were analyzed. γH2AX and ATM expressed higher in thyroid cancer tissues than in benign nodular goiter and normal adjacent tissues. γH2AX was correlated with ATM in thyroid cancer. Both γH2AX and ATM expression were associated with FT3. γH2AX was also associated with T classification, TNM stage, FT4, TSH, and differentiation status. Therefore both of ATM and γH2AX seem to correlate with thyroid hormones and γH2AX plays a role in the differentiation status of thyroid cancer.
Collapse
Affiliation(s)
- Jin-lin Hu
- Department of Pathology, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Si-si Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiu-xiu Hou
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Jun Cao
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Lie-hao Jiang
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
| | - Ming-hua Ge
- Department of Head and Neck Surgery, Zhejiang Province Cancer Hospital, Hangzhou 310022, China
- *Ming-hua Ge:
| |
Collapse
|
19
|
DNA damage response and its clinicopathological relationship in appendiceal tumors. Int J Colorectal Dis 2014; 29:1349-54. [PMID: 25155618 DOI: 10.1007/s00384-014-1996-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Appendiceal tumors are rare, and their pathogenesis is not well known. DNA damage response (DDR) is a sequence from the detection of damaged DNA to the repair, and its impairment is implicated in the progression of cancers. The aim of the current study is to explore the expression and phosphorylation of checkpoint kinase 2 (Chk2) and TP53, which are key molecules in DDR, and their clinicopathological correlation in the appendiceal tumors. METHODS Chk2, phosphorylated Chk2 (pChk2), and TP53 were immunostained in 4 cases of adenoma (AD), 5 non-mucinous adenocarcinomas (AC), 29 low-grade appendiceal mucinous neoplasms (LAMN), and 7 mucinous adenocarcinomas (MAC). Ki-67 labeling index was also evaluated by immunostaining. RESULTS Chk2 was highly expressed in the nuclei of all the appendiceal tumors. While pChk2 was high in AD, LAMN, and MAC, it was reduced in AC. Nuclear positive reaction of TP53 was lower in LAMN compared with those of other tumors. The Ki-67 labeling index was slightly lower in LAMN than those in other tumors. The recurrence and death in LAMN is infrequent compared with those in AC and MAC. CONCLUSIONS The current study suggested the impairment of DDR in AC and MAC. DDR appeared to be preserved in LAMN, and it may account for low proliferating activity and a favorable clinical course in LAMN.
Collapse
|
20
|
Kefala M, Papageorgiou SG, Kontos CK, Economopoulou P, Tsanas A, Pappa V, Panayiotides IG, Gorgoulis VG, Patsouris E, Foukas PG. Increased expression of phosphorylated NBS1, a key molecule of the DNA damage response machinery, is an adverse prognostic factor in patients with de novo myelodysplastic syndromes. Leuk Res 2013; 37:1576-82. [PMID: 24054861 DOI: 10.1016/j.leukres.2013.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 01/02/2023]
Abstract
The expression of activated forms of key proteins of the DNA damage response machinery (pNBS1, pATM and γH2AX) was assessed by means of immunohistochemistry in bone marrow biopsies of 74 patients with de novo myelodysplastic syndromes (MDS) and compared with 15 cases of de novo acute myeloid leukemia (AML) and 20 with reactive bone marrow histology. Expression levels were significantly increased in both MDS and AML, compared to controls, being higher in high-risk than in low-risk MDS. Increased pNBS1 and γH2AX expression possessed a significant negative prognostic impact for overall survival in MDS patients, whereas pNBS1 was an independent marker of poor prognosis.
Collapse
Affiliation(s)
- Maria Kefala
- 2nd Department of Pathology, University of Athens Medical School, "Attikon" University Hospital, Chaidari, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Carlson BC, Hofer MD, Ballek N, Yang XJ, Meeks JJ, Gonzalez CM. Protein Markers of Malignant Potential in Penile and Vulvar Lichen Sclerosus. J Urol 2013; 190:399-406. [DOI: 10.1016/j.juro.2013.01.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Bayard C. Carlson
- Departments of Urology and Pathology (XJY), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Matthias D. Hofer
- Departments of Urology and Pathology (XJY), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Nathaniel Ballek
- Departments of Urology and Pathology (XJY), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ximing J. Yang
- Departments of Urology and Pathology (XJY), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joshua J. Meeks
- Departments of Urology and Pathology (XJY), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Chris M. Gonzalez
- Departments of Urology and Pathology (XJY), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
22
|
Valdiglesias V, Giunta S, Fenech M, Neri M, Bonassi S. γH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res 2013; 753:24-40. [PMID: 23416207 DOI: 10.1016/j.mrrev.2013.02.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
DNA double strand breaks (DSB) are the gravest form of DNA damage in eukaryotic cells. Failure to detect DSB and activate appropriate DNA damage responses can cause genomic instability, leading to tumorigenesis and possibly accelerated aging. Phosphorylated histone H2AX (γH2AX) is used as a biomarker of cellular response to DSB and its potential for monitoring DNA damage and repair in human populations has been explored in this review. A systematic search was conducted in PubMed for articles, in English, on human studies reporting γH2AX as a biomarker of either DNA repair or DNA damage. A total of 68 publications were identified. Thirty-four studies (50.0%) evaluated the effect of medical procedures or treatments on γH2AX levels; 20 (29.4%) monitored γH2AX in specific pathological conditions with a case/control or case/case design; 5 studies (7.4%) evaluated the effect of environmental genotoxic exposures, and 9 (13.2%) were descriptive studies on cancer and aging. Peripheral blood lymphocytes (44.6%) or biopsies/tissue specimens (24.3%) were the most commonly used samples. γH2AX was scored by optical microscopy as immunostained foci (78%), or by flow cytometry (16%). Critical features affecting the reliability of the assay, including protocols heterogeneity, specimen, cell cycle, kinetics, study design, and statistical analysis, are hereby discussed. Because of its sensitivity, efficiency and mechanistic relevance, the γH2AX assay has great potential as a DNA damage biomarker; however, the technical and epidemiological heterogeneity highlighted in this review infer a necessity for experimental standardization of the assay.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Simona Giunta
- CSIRO Preventative Health Flagship, Adelaide 5000, Australia
| | - Michael Fenech
- CSIRO Preventative Health Flagship, Adelaide 5000, Australia
| | - Monica Neri
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Roma, Italy.
| |
Collapse
|
23
|
Takabayashi H, Wakai T, Ajioka Y, Korita PV, Yamaguchi N. Alteration of the DNA damage response in colorectal tumor progression. Hum Pathol 2013; 44:1038-46. [PMID: 23332927 DOI: 10.1016/j.humpath.2012.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/27/2022]
Abstract
Recent studies have demonstrated increased levels of DNA double-strand breaks (DSBs) and activation of the DNA damage response (DDR) in precancerous lesions during cancer development. Those observations have not been fully elucidated using paraffin-embedded tissues of colorectal tumors. The aims of this study were to analyze the presence of DSBs and DDR activation mediated by p53-binding protein 1 (53BP1), which is a conserved checkpoint and DNA repair protein, and to clarify their association with colorectal tumor progression. We used immunohistochemical staining to investigate the expression of γH2AX, a sensitive marker for DSBs, in 152 colorectal tumors (46 low-grade adenomas, 25 high-grade adenomas, 25 intramucosal carcinomas, and 56 invasive carcinomas). The colocalization of γH2AX and 53BP1, which is strongly associated with the DSB repair process, was analyzed using double-label immunofluorescence. Elevated γH2AX expression was identified in 16 (16.7%) of 96 intramucosal neoplasias and in 19 (33.9%) of 56 invasive carcinomas. Double-label immunofluorescence occasionally revealed cells, particularly in invasive carcinoma, with γH2AX foci that did not colocalize with 53BP1. The percentage of tumor cells with γH2AX foci that colocalized with 53BP1 was significantly lower in invasive carcinoma than in intramucosal neoplasia (median percentage, 54.8% and 88.5%, respectively; P = .001). In conclusion, the number of cells with DSBs increases in intramucosal neoplasia and invasive carcinoma. The decreasing number of cells with colocalization of γH2AX and 53BP1 during the progression from intramucosal neoplasia to invasive carcinoma suggests that DDR, at least mediated by 53BP1, is inefficient during the process of cancer invasion.
Collapse
Affiliation(s)
- Hiroaki Takabayashi
- Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | | | | | | | | |
Collapse
|
24
|
Darzynkiewicz Z, Zhao H, Halicka HD, Rybak P, Dobrucki J, Wlodkowic D. DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis. Crit Rev Clin Lab Sci 2012; 49:199-217. [PMID: 23137030 DOI: 10.3109/10408363.2012.738808] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Cornelissen B, Darbar S, Kersemans V, Allen D, Falzone N, Barbeau J, Smart S, Vallis KA. Amplification of DNA damage by a γH2AX-targeted radiopharmaceutical. Nucl Med Biol 2012; 39:1142-51. [PMID: 22819196 DOI: 10.1016/j.nucmedbio.2012.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/11/2012] [Accepted: 06/02/2012] [Indexed: 01/07/2023]
Abstract
UNLABELLED (111)In-DTPA-anti-γH2AX-Tat, which combines an anti-γH2AX antibody with a cell-penetrating peptide, Tat, and the Auger electron-emitting radioisotope, (111)In, targets the DNA damage signalling protein, γH2AX, and has potential as a probe for imaging DNA damage in vivo. The goal of this study was to investigate whether (111)In-DTPA-anti-γH2AX-Tat labelled to high specific activity (6MBq/μg) can amplify treatment-related DNA damage for therapeutic gain. METHODS MDA-MB-468 and MDA-MB-231/H2N (231-H2N) breast cancer cells were incubated with (111)In-DTPA-anti-γH2AX-Tat (3MBq, 6MBq/μg) or a control radioimmunoconjugate, (111)In-DTPA-mIgG-Tat, and exposed to IR or bleomycin. DNA damage was studied by counting γH2AX foci and by neutral comet assay. Cytotoxicity was evaluated using clonogenic assays. (111)In-DTPA-anti-γH2AX-Tat was administered intravenously to 231-H2N-xenograft-bearing Balb/c nu/nu mice in tumor growth inhibition studies. RESULTS The number of γH2AX foci was greater after exposure of cells to IR (10Gy) plus (111)In-DTPA-anti-γH2AX-Tat compared to IR alone (20.6±2.5 versus 10.4±2.3 foci/cell; P<.001).(111)In-DTPA-anti-γH2AX-Tat resulted in a reduced surviving fraction in cells co-treated with IR (4Gy) versus IR alone (5.2%±0.9% versus 47.8%±2.8%; P<.001). Similarly, bleomycin (25-200μg/mL) plus (111)In-DTPA-anti-γH2AX-Tat resulted in a lower SF compared to bleomycin alone. The combination of a single exposure to IR (10Gy) plus (111)In-DTPA-anti-γH2AX-Tat significantly decreased the growth rate of 231-H2N xenografts in vivo compared to either (111)In-DTPA-anti-γH2AX-Tat or IR alone (-0.002±0.004 versus 0.036±0.011 and 0.031±0.014mm(3)/day, respectively, P<.001). CONCLUSION (111)In-DTPA-anti-γH2AX-Tat amplifies anticancer treatment-related DNA damage in vitro and has a potent anti-tumor effect when combined with IR in vivo.
Collapse
Affiliation(s)
- Bart Cornelissen
- Department of Oncology, CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, OX3 7LJ Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Halicka HD, Zhao H, Li J, Traganos F, Studzinski GP, Darzynkiewicz Z. Attenuation of constitutive DNA damage signaling by 1,25-dihydroxyvitamin D3. Aging (Albany NY) 2012; 4:270-8. [PMID: 22498490 PMCID: PMC3371762 DOI: 10.18632/aging.100450] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In addition to its traditional role in the regulation of calcium homeostasis and bone metabolism, vitamin D also exhibits immunomodulatory, anti-proliferative and cancer preventive activities. Molecular mechanisms that confer the chemo-preventive properties to vitamin D are poorly understood. We previously reported that constitutive phosphorylation of histone H2AX on Ser139 (γH2AX) and activation of ATM (Ser1981 phosphorylation), seen in untreated normal or tumor cells predominantly in S phase of the cell cycle, is to a large extent indicative of DNA replication stress occurring as a result of persistent DNA damage caused by endogenous oxidants, by-products of oxidative metabolism. In the present study we observed that exposure of mitogenically stimulated human lymphocytes, pulmonary carcinoma A549 and lymphoblastoid TK6 cells to 1,25-dihydroxyvitamin D3 (1,25-VD) reduced the level of constitutive expression of γH2AX and ATM-S1981P. We also observed that the H2O2-induced rise in the level of γH2AX in lymphocytes was attenuated by 1,25-VD. Whereas in lymphocytes 1,25-VD reduced by 50-70% the level of endogenous oxidants as determined by their ability to oxidize 2,7-dichlorodihydrofluorescein (DCFH) in A549 and TK6 cells the attenuation of DNA damage signaling by 1,25-VD was seen in the absence of detectable reduction in DCFH oxidation. These findings suggest that while the anti-oxidant activity of 1,25-VD may contribute to a reduction in the intensity of DNA replication stress in lymphocytes, other factors play a role in the 1,25-VD effects seen in A549 and TK6 cells. The data are consistent with the recent report on the interaction between DNA damage signaling (ATM activation) and 1,25D receptor (VDR) phosphorylation that lead to enhancement of DNA repair efficiency, and provide further support for the chemo-preventive and anti-aging properties of this vitamin/hormone.
Collapse
Affiliation(s)
- H Dorota Halicka
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
27
|
Zhu YH, Bulavin DV. Wip1-dependent signaling pathways in health and diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:307-25. [PMID: 22340722 DOI: 10.1016/b978-0-12-396456-4.00001-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spatial and temporal regulation of protein phosphorylation is key to the control of different molecular networks. This regulation is achieved in part through dephosphorylation of numerous signaling molecules, and emerging evidence highlights the importance of a new member of the PP2C family of phosphatase, Wild-type p53 induced phosphatase 1 (Wip1), in regulating stress-induced and DNA damage-induced networks. In recent years, analysis of Wip1 has focused primarily on its role in tumorigenesis because of its overexpression in human tumors and a profound tumor-resistant phenotype of Wip1-deficient mice. Recently, Wip1 has also been shown to play an important role in several physiological processes including adult neurogenesis and organismal aging. This review addresses how Wip1 phosphatase regulates different signaling networks in a spatial and temporal manner and how these differences contribute to various biological outcomes in the context of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Cell Cycle Control and Tumorigenesis Group, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | |
Collapse
|
28
|
DNA Damage Response is Prominent in Ovarian High-Grade Serous Carcinomas, Especially Those with Rsf-1 (HBXAP) Overexpression. JOURNAL OF ONCOLOGY 2011; 2012:621685. [PMID: 22028712 PMCID: PMC3199114 DOI: 10.1155/2012/621685] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/29/2011] [Accepted: 08/11/2011] [Indexed: 12/13/2022]
Abstract
DNA damage commonly occurs in cancer cells as a result of endogenous and tumor microenvironmental stress. In this study, we applied immunohistochemistry to study the expression of phosphorylated Chk2 (pChk2), a surrogate marker of the DNA damage response, in high grade and low grade of ovarian serous carcinoma. A phospho-specific antibody specific for threonine 68 of Chk2 was used for immunohistochemistry on a total of 292 ovarian carcinoma tissues including 250 high-grade and 42 low-grade serous carcinomas. Immunostaining intensity was correlated with clinicopathological features. We found that there was a significant correlation between pChk2 immunostaining intensity and percentage of pChk2 positive cells in tumors and demonstrated that high-grade serous carcinomas expressed an elevated level of pChk2 as compared to low-grade serous carcinomas. Normal ovarian, fallopian tube, ovarian cyst, and serous borderline tumors did not show detectable pChk2 immunoreactivity. There was no significant difference in pChk2 immunoreactivity between primary and recurrent high-grade serous carcinomas. In high-grade serous carcinomas, a significant correlation (P < 0.0001) in expression level (both in intensity and percentage) was found between pChk2 and Rsf-1 (HBXAP), a gene involved in chromatin remodeling that is amplified in high-grade serous carcinoma. Our results suggest that the DNA damage response is common in high-grade ovarian serous carcinomas, especially those with Rsf-1 overexpression, suggesting that Rsf-1 may be associated with DNA damage response in high-grade serous carcinomas.
Collapse
|
29
|
Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 2011; 301:G401-24. [PMID: 21700901 PMCID: PMC3774253 DOI: 10.1152/ajpgi.00110.2011] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States, and, even though 5-15% of the total CRC cases can be attributed to individual genetic predisposition, environmental factors could be considered major factors in susceptibility to CRC. Lifestyle factors increasing the risks of CRC include elevated body mass index, obesity, and reduced physical activity. Additionally, a number of dietary elements have been associated with higher or lower incidence of CRC. In this context, it has been suggested that diets high in fruit and low in meat might have a protective effect, reducing the incidence of colorectal adenomas by modulating the composition of the normal nonpathogenic commensal microbiota. In addition, it has been demonstrated that changes in abundance of taxonomic groups have a profound impact on the gastrointestinal physiology, and an increasing number of studies are proposing that the microbiota mediates the generation of dietary factors triggering colon cancer. High-throughput sequencing and molecular taxonomic technologies are rapidly filling the knowledge gaps left by conventional microbiology techniques to obtain a comprehensive catalog of the human intestinal microbiota and their associated metabolic repertoire. The information provided by these studies will be essential to identify agents capable of modulating the massive amount of gut bacteria in safe noninvasive manners to prevent CRC. Probiotics, defined as "live microorganisms which, when administered in adequate amounts, confer a health benefit on the host" (219), are capable of transient modulation of the microbiota, and their beneficial effects include reinforcement of the natural defense mechanisms and protection against gastrointestinal disorders. Probiotics have been successfully used to manage infant diarrhea, food allergies, and inflammatory bowel disease; hence, the purpose of this review was to examine probiotic metabolic activities that may have an effect on the prevention of CRC by scavenging toxic compounds or preventing their generation in situ. Additionally, a brief consideration is given to safety evaluation and production methods in the context of probiotics efficacy.
Collapse
Affiliation(s)
- M. Andrea Azcárate-Peril
- 1Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill;
| | - Michael Sikes
- 2Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| | - José M. Bruno-Bárcena
- 2Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
30
|
Cornelissen B, Kersemans V, Darbar S, Thompson J, Shah K, Sleeth K, Hill MA, Vallis KA. Imaging DNA damage in vivo using gammaH2AX-targeted immunoconjugates. Cancer Res 2011; 71:4539-49. [PMID: 21586614 PMCID: PMC3130133 DOI: 10.1158/0008-5472.can-10-4587] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA damage responses (DDR) occur during oncogenesis and therapeutic responses to DNA damaging cytotoxic drugs. Thus, a real-time method to image DNA damage in vivo would be useful to diagnose cancer and monitor its treatment. Toward this end, we have developed fluorophore- and radioisotope-labeled immunoconjugates to target a DDR signaling protein, phosphorylated histone H2A variant H2AX (γH2AX), which forms foci at sites of DNA double-strand breaks. Anti-γH2AX antibodies were modified by the addition of diethylenetriaminepentaacetic acid (DTPA) to allow (111)In labeling or the fluorophore Cy3. The cell-penetrating peptide Tat (GRKKRRQRRRPPQGYG) was also added to the immunoconjugate to aid nuclear translocation. In irradiated breast cancer cells, confocal microscopy confirmed the expected colocalization of anti-γH2AX-Tat with γH2AX foci. In comparison with nonspecific antibody conjugates, (111)In-anti-γH2AX-Tat was retained longer in cells. Anti-γH2AX-Tat probes were also used to track in vivo DNA damage, using a mouse xenograft model of human breast cancer. After local X-ray irradiation or bleomycin treatment, the anti-γH2AX-Tat probes produced fluorescent and single photon emission computed tomography signals in the tumors that were proportionate to the delivered radiation dose and the amount of γH2AX present. Taken together, our findings establish the use of radioimmunoconjugates that target γH2AX as a noninvasive imaging method to monitor DNA damage, with many potential applications in preclinical and clinical settings.
Collapse
Affiliation(s)
- Bart Cornelissen
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Veerle Kersemans
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Sonali Darbar
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - James Thompson
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Ketan Shah
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Kate Sleeth
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Mark A. Hill
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Katherine A. Vallis
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Chou SJ, Alawi F. Expression of DNA damage response biomarkers during oral carcinogenesis. ACTA ACUST UNITED AC 2011; 111:346-53. [PMID: 21310354 DOI: 10.1016/j.tripleo.2010.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 10/27/2010] [Indexed: 02/08/2023]
Abstract
Emerging evidence suggests that an intact DNA damage response (DDR) serves as a potent barrier to malignant transformation. Using immunohistochemistry and patient-derived biopsy samples, we investigated whether the same may hold true during oral carcinogenesis. DNA damage accumulates early in the development of oral squamous cell carcinoma (OSCC) as evidenced by the detection of surrogate DDR biomarkers γ-H2A.X and phosphorylated CHK2-threonine-68 (phospho-CHK2(Thr68)) in epithelial hyperplasias. However, whereas γ-H2A.X expression peaked in dysplastic epithelium, its levels were significantly reduced in OSCCs (χ(2) = 7.655; P = .02). In contrast, there was a trend toward increased phospho-CHK2(Thr68) expression with increasing severity of the pathology. Nonetheless, combined expression of the biomarkers was significantly greater in the nontransformed tissues relative to OSCCs (χ(2) = 6.42; P = .04). Thus, our findings suggest that early therapeutic exploitation of the DDR may be worthy of investigation as a means by which to limit OSCC development.
Collapse
Affiliation(s)
- Shan-Ju Chou
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
32
|
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711:193-201. [DOI: 10.1016/j.mrfmmm.2010.12.016] [Citation(s) in RCA: 666] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/22/2010] [Accepted: 12/31/2010] [Indexed: 04/08/2023]
|
33
|
Huang CJ, Yang SH, Huang SM, Lin CM, Chien CC, Chen YC, Lee CL, Wu HH, Chang CC. A predicted protein, KIAA0247, is a cell cycle modulator in colorectal cancer cells under 5-FU treatment. J Transl Med 2011; 9:82. [PMID: 21619678 PMCID: PMC3126726 DOI: 10.1186/1479-5876-9-82] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/28/2011] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the predominant gastrointestinal malignancy and the leading cause of cancer death. The identification of genes related to CRC is important for the development of successful therapies and earlier diagnosis. METHODS Molecular analysis of feces was evaluated as a potential method for CRC detection. Expression of a predicted protein with unknown function, KIAA0247, was found in feces evaluated using specific quantitative real-time polymerase chain reaction. Its cellular function was then analyzed using immunofluorescent staining and the changes in the cell cycle in response to 5-fluorouracil (5-FU) were assessed. RESULTS Gastrointestinal tissues and peripheral blood lymphocytes ubiquitously expressed KIAA0247. 56 CRC patients fell into two group categories according to fecal KIAA0247 mRNA expression levels. The group with higher fecal KIAA0247 (n=22; ≥0.4897) had a significantly greater five-year overall survival rate than the group with lower fecal KIAA0247 (n = 30; <0.4897) (66.0 ± 11.6%; p=0.035, log-rank test). Fecal expression of KIAA0247 inversely related to CRC tumor size (Kendall's tau-b=-0.202; p=0.047). Immunofluorescent staining revealed that the cytoplasm of CRC cells evenly expresses KIAA0247 without 5-FU treatment, and KIAA0247 accumulates in the nucleus after 40 μM 5-FU treatment. In HCT116 p53(-/-) cells, which lack p53 cell cycle control, the proportion of cells in the G2/M phase was larger (13%) in KIAA0247-silent cells than in the respective shLuc control (10%) and KIAA0247-overexpressing cells (7%) after the addition of low dose (40 μM) 5-FU. Expression of three cyclin genes (cyclin A2, cyclin B1, and cyclin B2) also downregulated in the cells overexpressing KIAA0247. CONCLUSIONS This is the first description of a linkage between KIAA0247 and CRC. The study's data demonstrate overexpression of KIAA0247 associates with 5-FU therapeutic benefits, and also identify the clinical significance of fecal KIAA0247 in CRC.
Collapse
Affiliation(s)
- Chi-Jung Huang
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y. Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res 2010; 16:4532-42. [PMID: 20823146 PMCID: PMC2940983 DOI: 10.1158/1078-0432.ccr-10-0523] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tumor cells are often deficient in DNA damage response (DDR) pathways, and anticancer therapies are commonly based on genotoxic treatments using radiation and/or drugs that damage DNA directly or interfere with DNA metabolism, leading to the formation of DNA double-strand breaks (DSB), and ultimately to cell death. Because DSBs induce the phosphorylation of histone H2AX (γH2AX) in the chromatin flanking the break site, an antibody directed against γH2AX can be employed to measure DNA damage levels before and after patient treatment. Poly(ADP-ribose) polymerases (PARP1 and PARP2) are also activated by DNA damage, and PARP inhibitors show promising activity in cancers with defective homologous recombination (HR) pathways for DSB repair. Ongoing clinical trials are testing combinations of PARP inhibitors with DNA damaging agents. Poly(ADP-ribosylation), abbreviated as PAR, can be measured in clinical samples and used to determine the efficiency of PARP inhibitors. This review summarizes the roles of γH2AX and PAR in the DDR, and their use as biomarkers to monitor drug response and guide clinical trials, especially phase 0 clinical trials. We also discuss the choices of relevant samples for γH2AX and PAR analyses.
Collapse
Affiliation(s)
- Christophe E Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Studzinski GP, Wang X, Danilenko M. DNA damage response: a barrier or a path to tumor progression? Cancer Biol Ther 2010; 9:253-5. [PMID: 20061811 DOI: 10.4161/cbt.9.3.10959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- George P Studzinski
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | | | |
Collapse
|