1
|
Bronson K, Banik J, Lim J, Reddick MM, Hardy L, Childs GV, MacNicol MC, MacNicol AM. Musashi-dependent mRNA translational activation is mediated through association with the Scd6/Like-sm family member, LSM14B. Sci Rep 2025; 15:12363. [PMID: 40211036 PMCID: PMC11986153 DOI: 10.1038/s41598-025-97188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
The Musashi family of sequence-specific RNA binding proteins (Musashi1 and Musashi2) serve a critical role in mediating both physiological and pathological stem cell function in many tissue types by repressing the translation of target mRNAs that encode proteins that promote cell cycle inhibition and cell differentiation. In addition to repression of target mRNAs, we have also identified a role for Musashi proteins in activating the translation of target mRNAs in a context-dependent manner. However, the molecular mechanisms by which Musashi controls target mRNA translational activation have not been fully elucidated. Since Musashi lacks inherent enzymatic activity, its ability to modulate target mRNA translation likely involves recruitment of ancillary proteins to the target mRNA. We have previously identified a number of proteins that specifically associate with Musashi during Xenopus laevis oocyte maturation at a time when Musashi target mRNAs are translationally activated. Here, we demonstrate that one of these proteins, the Scd6/Like-sm family member LSM14B, is a mediator of the Musashi1-dependent mRNA translational activation that is required for oocyte maturation. Unlike previously characterized proteins which interact with the C-terminal domain of Musashi, LSM14B instead associates with the N-terminal RNA recognition motifs. Additionally, we demonstrate that the mammalian Prop1 mRNA, which encodes a key regulator of pituitary development, is translationally activated by Musashi1 in a LSM14B-dependent manner. Our studies support an evolutionarily conserved role for LSM14B in facilitating the ability of Musashi1 to promote target mRNA translation.
Collapse
Affiliation(s)
- Katherine Bronson
- Department of Neuroscience, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Jewel Banik
- Department of Neuroscience, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Juchan Lim
- Department of Neuroscience, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Milla M Reddick
- Department of Neuroscience, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Linda Hardy
- Department of Neuroscience, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Gwen V Childs
- Department of Neuroscience, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Melanie C MacNicol
- Department of Neuroscience, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Angus M MacNicol
- Department of Neuroscience, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Banik J, Moreira ARS, Lim J, Tomlinson S, Hardy LL, Lagasse A, Haney A, Crimmins MR, Boehm U, Odle AK, MacNicol MC, Childs GV, MacNicol AM. The Musashi RNA binding proteins direct the translational activation of key pituitary mRNAs. Sci Rep 2024; 14:5918. [PMID: 38467682 PMCID: PMC10928108 DOI: 10.1038/s41598-024-56002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
The pituitary functions as a master endocrine gland that secretes hormones critical for regulation of a wide variety of physiological processes including reproduction, growth, metabolism and stress responses. The distinct hormone-producing cell lineages within the pituitary display remarkable levels of cell plasticity that allow remodeling of the relative proportions of each hormone-producing cell population to meet organismal demands. The molecular mechanisms governing pituitary cell plasticity have not been fully elucidated. Our recent studies have implicated a role for the Musashi family of sequence-specific mRNA binding proteins in the control of pituitary hormone production, pituitary responses to hypothalamic stimulation and modulation of pituitary transcription factor expression in response to leptin signaling. To date, these actions of Musashi in the pituitary appear to be mediated through translational repression of the target mRNAs. Here, we report Musashi1 directs the translational activation, rather than repression, of the Prop1, Gata2 and Nr5a1 mRNAs which encode key pituitary lineage specification factors. We observe that Musashi1 further directs the translational activation of the mRNA encoding the glycolipid Neuronatin (Nnat) as determined both in mRNA reporter assays as well as in vivo. Our findings suggest a complex bifunctional role for Musashi1 in the control of pituitary cell function.
Collapse
Affiliation(s)
- Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Ana Rita Silva Moreira
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Juchan Lim
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Sophia Tomlinson
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Meghan R Crimmins
- Arkansas Children's Nutrition Center, Arkansas Children's Hospital, Little Rock, AR, USA
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Slot 814, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Soueid DM, Garner AL. Adaptation of RiPCA for the Live-Cell Detection of mRNA-Protein Interactions. Biochemistry 2023; 62:3323-3336. [PMID: 37963240 PMCID: PMC11466511 DOI: 10.1021/acs.biochem.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
RNA-binding proteins (RBPs) act as essential regulators of cell fate decisions, through their ability to bind and regulate the activity of cellular RNAs. For protein-coding mRNAs, RBPs control the localization, stability, degradation, and ultimately translation of mRNAs to impact gene expression. Disruption of the vast network of mRNA-protein interactions has been implicated in many human diseases, and accordingly, targeting these interactions has surfaced as a new frontier in RNA-targeted drug discovery. To catalyze this new field, methods are needed to enable the detection and subsequent screening of mRNA-RBP interactions, particularly in live cells. Using our laboratory's RNA-interaction with Protein-mediated Complementation Assay (RiPCA) technology, herein we describe its application to mRNA-protein interactions and present a guide for the development of future RiPCA assays for structurally diverse classes of mRNA-protein interactions.
Collapse
Affiliation(s)
- Dalia M. Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Chagas PS, Veronez LC, de Sousa GR, Cruzeiro GAV, Corrêa CAP, Saggioro FP, de Paula Queiroz RG, Marie SKN, Brandalise SR, Cardinalli IA, Yunes JA, Júnior CGC, Machado HR, Santos MV, Scrideli CA, Tone LG, Valera ET. Musashi-1 regulates cell cycle and confers resistance to cisplatin treatment in Group 3/4 medulloblastomas cells. Hum Cell 2023; 36:2129-2139. [PMID: 37460706 DOI: 10.1007/s13577-023-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 10/20/2023]
Abstract
Groups (Grp) 3 and 4 are aggressive molecular subgroups of medulloblastoma (MB), with high rates of leptomeningeal dissemination. To date, there is still a paucity of biomarkers for these subtypes of MBs. In this study, we investigated the clinical significance and biological functions of Musashi-1 (MSI1) in Grp3 and Grp4-MBs. First, we assessed the expression profile of MSI1 in 59 primary MB samples (15-WNT, 18-SHH, 9-Grp3, and 17-Grp4 subgroups) by qRT-PCR. MSI1 mRNA expression levels were also validated in an additional public dataset of MBs (GSE85217). The ROC curve was used to validate the diagnostic standards of MSI1 expression. Next, the potential correlated cell-cycle genes were measured by RNA-Seq. Cell cycle, cell viability, and apoptosis were evaluated in a Grp3/Grp4 MB cell line after knockdown of MSI1 and cisplatin treatment. We identified an overexpression of MSI1 with a high accuracy to discriminate Grp3/Grp4-MBs from non-Grp3/Grp4-MBs. We identified that MSI1 knockdown not only triggered transcriptional changes in the cell-cycle pathway, but also affected G2/M phase in vitro, supporting the role of knockdown of MSI1 in cell-cycle arrest. Finally, MSI1 knockdown decreased cell viability and sensitized D283-Med cells to cisplatin treatment by enhancing cell apoptosis. Based on these findings, we suggest that MSI1 modulates cell-cycle progression and may play a role as biomarker for Grp3/Grp4-MBs. In addition, MSI1 knockdown combined with cisplatin may offer a potential strategy to be further explored in Grp3/Grp4-MBs.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil.
| | - Luciana Chain Veronez
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Graziella Ribeiro de Sousa
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
- Department of Pediatric Oncology, Harvard Medical School-Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, Ribeirão Preto Medical School, 3900 Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pathology, Rede D'Or São Luiz Hospital, Rua das Perobas, São Paulo, SP, 04321-120, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratory of Cellular and Molecular Biology, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Volpon Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Av., Ribeirão Preto, SP, 390014049-900, Brazil
| | - Carlos Alberto Scrideli
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School-University of São Paulo, Bandeirantes Avenue, 3900, Ribeirão Preto, São Paulo, 14048-900, Brazil
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Clinics Hospital-Ribeirão Preto Medical School-University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Sicking M, Falke I, Löblein MT, Eich HT, Götte M, Greve B, Troschel FM. The Musashi RNA-binding proteins in female cancers: insights on molecular mechanisms and therapeutic relevance. Biomark Res 2023; 11:76. [PMID: 37620963 PMCID: PMC10463710 DOI: 10.1186/s40364-023-00516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
RNA-binding proteins have increasingly been identified as important regulators of gene expression given their ability to bind distinct RNA sequences and regulate their fate. Mounting evidence suggests that RNA-binding proteins are involved in the onset and progression of multiple malignancies, prompting increasing interest in their potential for therapeutic intervention.The Musashi RNA binding proteins Musashi-1 and Musashi-2 were initially identified as developmental factors of the nervous system but have more recently been found to be ubiquitously expressed in physiological tissues and may be involved in pathological cell behavior. Both proteins are increasingly investigated in cancers given dysregulation in multiple tumor entities, including in female malignancies. Recent data suggest that the Musashi proteins serve as cancer stem cell markers as they contribute to cancer cell proliferation and therapy resistance, prompting efforts to identify mechanisms to target them. However, as the picture remains incomplete, continuous efforts to elucidate their role in different signaling pathways remain ongoing.In this review, we focus on the roles of Musashi proteins in tumors of the female - breast, endometrial, ovarian and cervical cancer - as we aim to summarize current knowledge and discuss future perspectives.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Isabel Falke
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Maria T Löblein
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Hans Th Eich
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, Albert Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
6
|
Moreira ARS, Lim J, Urbaniak A, Banik J, Bronson K, Lagasse A, Hardy L, Haney A, Allensworth M, Miles TK, Gies A, Byrum SD, Wilczynska A, Boehm U, Kharas M, Lengner C, MacNicol MC, Childs GV, MacNicol AM, Odle AK. Musashi Exerts Control of Gonadotrope Target mRNA Translation During the Mouse Estrous Cycle. Endocrinology 2023; 164:bqad113. [PMID: 37477898 PMCID: PMC10402870 DOI: 10.1210/endocr/bqad113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The anterior pituitary controls key biological processes, including growth, metabolism, reproduction, and stress responses through distinct cell types that each secrete specific hormones. The anterior pituitary cells show a remarkable level of cell type plasticity that mediates the shifts in hormone-producing cell populations that are required to meet organismal needs. The molecular mechanisms underlying pituitary cell plasticity are not well understood. Recent work has implicated the pituitary stem cell populations and specifically, the mRNA binding proteins of the Musashi family in control of pituitary cell type identity. In this study we have identified the target mRNAs that mediate Musashi function in the adult mouse pituitary and demonstrate the requirement for Musashi function in vivo. Using Musashi RNA immunoprecipitation, we identify a cohort of 1184 mRNAs that show specific Musashi binding. Identified Musashi targets include the Gnrhr mRNA, which encodes the gonadotropin-releasing hormone receptor (GnRHR), and the Fshb mRNA, encoding follicle-stimulating hormone (FSH). Reporter assays reveal that Musashi functions to exert repression of translation of the Fshb mRNA, in addition to the previously observed repression of the Gnrhr mRNA. Importantly, mice engineered to lack Musashi in gonadotropes demonstrate a failure to repress translation of the endogenous Gnrhr and Fshb mRNAs during the estrous cycle and display a significant heterogeneity in litter sizes. The range of identified target mRNAs suggests that, in addition to these key gonadotrope proteins, Musashi may exert broad regulatory control over the pituitary proteome in a cell type-specific manner.
Collapse
Affiliation(s)
- Ana Rita Silva Moreira
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Juchan Lim
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Katherine Bronson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Melody Allensworth
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tiffany K Miles
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Allen Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children's Research Institute, Arkansas Children's Hospital, Little Rock, AR 72202, USA
| | - Ania Wilczynska
- Bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg 66421, Germany
| | - Michael Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Knockdown of the stem cell marker Musashi-1 inhibits endometrial cancer growth and sensitizes cells to radiation. Stem Cell Res Ther 2022; 13:212. [PMID: 35619161 PMCID: PMC9137084 DOI: 10.1186/s13287-022-02891-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Endometrial carcinoma is the most common gynecological cancer in Europe. Musashi-1 is known to be a key regulator of endometrial cancer stem cells and a negative prognostic marker. In the present study, we aimed to understand growth and gene expression patterns in endometrial carcinoma after Musashi-1 knockdown in vitro and in vivo. Changes in therapeutic resistance were also assessed.
Methods First, we performed analyses to understand Musashi-1 expression patterns using The Cancer Genome Atlas database. We then proceeded to assess effects of small interfering RNA-based Musashi-1 targeting in two endometrial carcinoma cell lines, Ishikawa and KLE. After quantifying baseline changes in cell metabolism, we used MTT tests to assess chemotherapy effects and colony formation assays to understand changes in radioresistance. For mechanistic study, we used quantitative polymerase chain reaction (qPCR) and western blotting of key Musashi-1 target genes and compared results to primary tissue database studies. Finally, xenograft experiments in a mouse model helped understand in vivo effects of Musashi-1 knockdown. Results Musashi-1 is aberrantly expressed in primary tumor tissues. In vitro, silencing of Musashi-1 resulted in a strong decline in cell proliferation and radioresistance, while chemoresistance remained unchanged. Loss of Musashi-1 led to downregulation of telomerase, DNA-dependent protein kinase, the Notch pathway and overexpression of cyclin-dependent kinase inhibitor p21, the latter of which we identified as a key mediator of Msi-1 knockdown-related anti-proliferative signaling. In vivo, the anti-proliferative effect was confirmed, with Msi-1 knockdown tumors being about 40% reduced in size. Conclusions Musashi-1 knockdown resulted in a strong decrease in endometrial cancer proliferation and a loss of radioresistance, suggesting therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02891-3.
Collapse
|
8
|
Karmakar S, Ramirez O, Paul KV, Gupta AK, Kumari V, Botti V, de Los Mozos IR, Neuenkirchen N, Ross RJ, Karanicolas J, Neugebauer KM, Pillai MM. Integrative genome-wide analysis reveals EIF3A as a key downstream regulator of translational repressor protein Musashi 2 (MSI2). NAR Cancer 2022; 4:zcac015. [PMID: 35528200 PMCID: PMC9070473 DOI: 10.1093/narcan/zcac015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 01/29/2023] Open
Abstract
Musashi 2 (MSI2) is an RNA binding protein (RBP) that regulates asymmetric cell division and cell fate decisions in normal and cancer stem cells. MSI2 appears to repress translation by binding to 3′ untranslated regions (3′UTRs) of mRNA, but the identity of functional targets remains unknown. Here, we used individual nucleotide resolution cross-linking and immunoprecipitation (iCLIP) to identify direct RNA binding partners of MSI2 and integrated these data with polysome profiling to obtain insights into MSI2 function. iCLIP revealed specific MSI2 binding to thousands of mRNAs largely in 3′UTRs, but translational differences were restricted to a small fraction of these transcripts, indicating that MSI2 regulation is not triggered by simple binding. Instead, the functional targets identified here were bound at higher density and contain more ‘UAG’ motifs compared to targets bound nonproductively. To further distinguish direct and indirect targets, MSI2 was acutely depleted. Surprisingly, only 50 transcripts were found to undergo translational induction on acute loss. Using complementary approaches, we determined eukaryotic translation initiation factor 3A (EIF3A) to be an immediate, direct target. We propose that MSI2 downregulation of EIF3A amplifies these effects on translation. Our results also underscore the challenges in defining functional targets of RBPs since mere binding does not imply a discernible functional interaction.
Collapse
Affiliation(s)
| | - Oscar Ramirez
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Kiran V Paul
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Vandana Kumari
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Igor Ruiz de Los Mozos
- Institute of Neurology, University College London and The Francis Crick Institute, London NW1 1AT, UK
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Robert J Ross
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Arzalluz-Luque A, Salguero P, Tarazona S, Conesa A. acorde unravels functionally interpretable networks of isoform co-usage from single cell data. Nat Commun 2022; 13:1828. [PMID: 35383181 PMCID: PMC8983708 DOI: 10.1038/s41467-022-29497-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is a highly-regulated post-transcriptional mechanism known to modulate isoform expression within genes and contribute to cell-type identity. However, the extent to which alternative isoforms establish co-expression networks that may be relevant in cellular function has not been explored yet. Here, we present acorde, a pipeline that successfully leverages bulk long reads and single-cell data to confidently detect alternative isoform co-expression relationships. To achieve this, we develop and validate percentile correlations, an innovative approach that overcomes data sparsity and yields accurate co-expression estimates from single-cell data. Next, acorde uses correlations to cluster co-expressed isoforms into a network, unraveling cell type-specific alternative isoform usage patterns. By selecting same-gene isoforms between these clusters, we subsequently detect and characterize genes with co-differential isoform usage (coDIU) across cell types. Finally, we predict functional elements from long read-defined isoforms and provide insight into biological processes, motifs, and domains potentially controlled by the coordination of post-transcriptional regulation. The code for acorde is available at https://github.com/ConesaLab/acorde .
Collapse
Affiliation(s)
- Angeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Pedro Salguero
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain.
| | - Ana Conesa
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain.
- Microbiology and Cell Sciences Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Soto-Acabá A, Ortiz-Pineda PA, Medina-Feliciano JG, Salem-Hernández J, García-Arrarás JE. Characterization of Two Novel EF-Hand Proteins Identifies a Clade of Putative Ca 2+-Binding Protein Specific to the Ambulacraria. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2022; 5:1-25. [PMID: 36382242 PMCID: PMC9648499 DOI: 10.26502/jbsb.5107030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, transcriptomic databases have become one of the main sources for protein discovery. In our studies of nervous system and digestive tract regeneration in echinoderms, we have identified several transcripts that have attracted our attention. One of these molecules corresponds to a previously unidentified transcript (Orpin) from the sea cucumber Holothuria glaberrima that appeared to be upregulated during intestinal regeneration. We have now identified a second highly similar sequence and analyzed the predicted proteins using bioinformatics tools. Both sequences have EF-hand motifs characteristic of calcium-binding proteins (CaBPs) and N-terminal signal peptides. Sequence comparison analyses such as multiple sequence alignments and phylogenetic analyses only showed significant similarity to sequences from other echinoderms or from hemichordates. Semi-quantitative RT-PCR analyses revealed that transcripts from these sequences are expressed in various tissues including muscle, haemal system, gonads, and mesentery. However, contrary to previous reports, there was no significant differential expression in regenerating tissues. Nonetheless, the identification of unique features in the predicted proteins and their presence in the holothurian draft genome suggest that these might comprise a novel subfamily of EF-hand containing proteins specific to the Ambulacraria clade.
Collapse
Affiliation(s)
| | - Pablo A Ortiz-Pineda
- Laboratorio de Biología Molecular y Genómica. Fundación InnovaGen. Popayán. Colombia
| | | | | | | |
Collapse
|
11
|
Association Between ATP Citrate Lyase (ACLY) Gene Polymorphism and Fattening, Slaughter and Pork Quality Traits in Polish Pigs. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The primary aim of this study was to estimate the relationship between ATP citrate lyase (ACLY) gene polymorphism (c.*523 T>C) and fattening and pork quality traits. Investigations were carried out on 526 pigs represented by three breeds: Polish Landrace (n=269), Polish Large White (n=189) and Puławska (n=68). ACLY genotypes were determined by PCR–RFLP method. It was demonstrated that the analyzed polymorphism had significant influence (P<0.05 and P≤0.01) on several economically important traits in pigs, e.g. average daily gain, average backfat thickness, lean meat percentage. The results obtained allow for application of c.*523 T>C polymorphism in breeding programs to improve the pig population in terms of fattening and slaughter traits. However, this breeding program may have a slight negative effect on meat texture parameters.
Collapse
|
12
|
Talebi-Yazdabadi Z, Jahanbakhsh N, Dormiani K, Forouzanfar M, Lachinani L, Zohrabi D, Tavalaee M, Nasr-Esfahani MH. Assessment of MUSASHI 1 and MUSASHI 2 expression in spermatozoa and testicular tissue. Andrologia 2021; 53:e14187. [PMID: 34309875 DOI: 10.1111/and.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 01/13/2023] Open
Abstract
MUSASHI (MSI) family plays the main role in the spermatogenesis process. The purpose of this study was the assessment of sperm MSI1 and MSI2, and sperm functional tests in infertile men (n = 30) with varicocele and fertile men (n = 30). Furthermore, MSI1 and MSI2 proteins were assessed in testicular tissue of azoospermic men (n = 9) as well as epididymal spermatozoa and testis of mice. Expression of MSI1 and MSI2 was assessed at RNA and protein levels in human spermatozoa. Sperm concentration and motility were significantly lower, while abnormal sperm morphology, lipid peroxidation, DNA fragmentation and protamine deficiency were significantly higher in men with varicocele compared to fertile individuals. Any significant difference was not observed in the expression of MSI1 and MSI2 mRNA between the two groups. Unlike MSI1 protein that was not detectable in humans, the relative expression of MSI2 protein was similar in varicocele and fertile individuals. The expression level of both Msi1 and Msi2 proteins was also observable in mouse spermatozoa. No significant relationship was observed between sperm functional parameters with expression of these genes. The data of this study demonstrated that although MSI1 and MSI2 play important roles during spermatogenesis, their relative expression in spermatozoa was not affected by varicocele.
Collapse
Affiliation(s)
- Zohreh Talebi-Yazdabadi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,ACECR Institute of Higher Education, Isfahan, Iran
| | - Neda Jahanbakhsh
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mahboobeh Forouzanfar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Dina Zohrabi
- ACECR Institute of Higher Education, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
13
|
Bley N, Hmedat A, Müller S, Rolnik R, Rausch A, Lederer M, Hüttelmaier S. Musashi-1-A Stemness RBP for Cancer Therapy? BIOLOGY 2021; 10:407. [PMID: 34062997 PMCID: PMC8148009 DOI: 10.3390/biology10050407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein Musashi-1 (MSI1) promotes stemness during development and cancer. By controlling target mRNA turnover and translation, MSI1 is implicated in the regulation of cancer hallmarks such as cell cycle or Notch signaling. Thereby, the protein enhanced cancer growth and therapy resistance to standard regimes. Due to its specific expression pattern and diverse functions, MSI1 represents an interesting target for cancer therapy in the future. In this review we summarize previous findings on MSI1's implications in developmental processes of other organisms. We revisit MSI1's expression in a set of solid cancers, describe mechanistic details and implications in MSI1 associated cancer hallmark pathways and highlight current research in drug development identifying the first MSI1-directed inhibitors with anti-tumor activity.
Collapse
Affiliation(s)
- Nadine Bley
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Ali Hmedat
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Simon Müller
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Robin Rolnik
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Alexander Rausch
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
- Core Facility Imaging, Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany
| | - Marcell Lederer
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| | - Stefan Hüttelmaier
- Department for Molecular Cell Biology, Institute for Molecular Medicine, Martin Luther University Halle/Wittenberg, Charles Tanford Protein Center, Kurt–Mothes–Str. 3A, 06120 Halle, Germany; (A.H.); (S.M.); (R.R.); (A.R.); (M.L.); (S.H.)
| |
Collapse
|
14
|
Allensworth-James M, Banik J, Odle A, Hardy L, Lagasse A, Moreira ARS, Bird J, Thomas CL, Avaritt N, Kharas MG, Lengner CJ, Byrum SD, MacNicol MC, Childs GV, MacNicol AM. Control of the Anterior Pituitary Cell Lineage Regulator POU1F1 by the Stem Cell Determinant Musashi. Endocrinology 2021; 162:bqaa245. [PMID: 33373440 PMCID: PMC7814296 DOI: 10.1210/endocr/bqaa245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 12/14/2022]
Abstract
The adipokine leptin regulates energy homeostasis through ubiquitously expressed leptin receptors. Leptin has a number of major signaling targets in the brain, including cells of the anterior pituitary (AP). We have previously reported that mice lacking leptin receptors in AP somatotropes display growth hormone (GH) deficiency, metabolic dysfunction, and adult-onset obesity. Among other targets, leptin signaling promotes increased levels of the pituitary transcription factor POU1F1, which in turn regulates the specification of somatotrope, lactotrope, and thyrotrope cell lineages within the AP. Leptin's mechanism of action on somatotropes is sex dependent, with females demonstrating posttranscriptional control of Pou1f1 messenger RNA (mRNA) translation. Here, we report that the stem cell marker and mRNA translational control protein, Musashi1, exerts repression of the Pou1f1 mRNA. In female somatotropes, Msi1 mRNA and protein levels are increased in the mouse model that lacks leptin signaling (Gh-CRE Lepr-null), coincident with lack of POU1f1 protein, despite normal levels of Pou1f1 mRNA. Single-cell RNA sequencing of pituitary cells from control female animals indicates that both Msi1 and Pou1f1 mRNAs are expressed in Gh-expressing somatotropes, and immunocytochemistry confirms that Musashi1 protein is present in the somatotrope cell population. We demonstrate that Musashi interacts directly with the Pou1f1 mRNA 3' untranslated region and exerts translational repression of a Pou1f1 mRNA translation reporter in a leptin-sensitive manner. Musashi immunoprecipitation from whole pituitary reveals coassociated Pou1f1 mRNA. These findings suggest a mechanism in which leptin stimulation is required to reverse Musashi-mediated Pou1f1 mRNA translational control to coordinate AP somatotrope function with metabolic status.
Collapse
Affiliation(s)
- Melody Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jewel Banik
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angela Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Alex Lagasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ana Rita Silva Moreira
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jordan Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Nathan Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
15
|
Allensworth-James ML, Odle AK, Lim J, LaGasse AN, Miles TK, Hardy LL, Haney AC, MacNicol MC, MacNicol AM, Childs GV. Metabolic signalling to somatotrophs: Transcriptional and post-transcriptional mediators. J Neuroendocrinol 2020; 32:e12883. [PMID: 32657474 PMCID: PMC8086172 DOI: 10.1111/jne.12883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/17/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022]
Abstract
In normal individuals, pituitary somatotrophs optimise body composition by responding to metabolic signals from leptin. To identify mechanisms behind the regulation of somatotrophs by leptin, we used Cre-LoxP technology to delete leptin receptors (LEPR) selectively in somatotrophs and developed populations purified by fluorescence-activated cell sorting (FACS) that contained 99% somatotrophs. FACS-purified, Lepr-null somatotrophs showed reduced levels of growth hormone (GH), growth hormone-releasing hormone receptor (GHRHR), and Pou1f1 proteins and Gh (females) and Ghrhr (both sexes) mRNAs. Pure somatotrophs also expressed thyroid-stimulating hormone (TSH) and prolactin (PRL), both of which were reduced in pure somatotrophs lacking LEPR. This introduced five gene products that were targets of leptin. In the present study, we tested the hypothesis that leptin is both a transcriptional and a post-transcriptional regulator of these gene products. Our tests showed that Pou1f1 and/or the Janus kinase/signal transducer and activator of transcription 3 transcriptional regulatory pathways are implicated in the leptin regulation of Gh or Ghrhr mRNAs. We then focused on potential actions by candidate microRNAs (miRNAs) with consensus binding sites on the 3' UTR of Gh or Ghrhr mRNAs. Somatotroph Lepr-null deletion mutants expressed elevated levels of miRNAs including miR1197-3p (in females), miR103-3p and miR590-3p (both sexes), which bind Gh mRNA, or miRNA-325-3p (elevated in both sexes), which binds Ghrhr mRNA. This elevation indicates repression of translation in the absence of LEPR. In addition, after detecting binding sites for Musashi on Tshb and Prl 3' UTR, we determined that Musashi1 repressed translation of both mRNAs in in vitro fluc assays and that Prl mRNA was enriched in Musashi immunoprecipitation assays. Finally, we tested ghrelin actions to determine whether its nitric oxide-mediated signalling pathways would restore somatotroph functions in deletion mutants. Ghrelin did not restore either GHRH binding or GH secretion in vitro. These studies show an unexpectedly broad role for leptin with respect to maintaining somatotroph functions, including the regulation of PRL and TSH in subsets of somatotrophs that may be progenitor cells.
Collapse
Affiliation(s)
- Melody L Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Juchan Lim
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alex N LaGasse
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tiffany K Miles
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anessa C Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
16
|
Orzechowska EJ, Katano T, Bialkowska AB, Yang VW. Interplay among p21 Waf1/Cip1, MUSASHI-1 and Krüppel-like factor 4 in activation of Bmi1-Cre ER reserve intestinal stem cells after gamma radiation-induced injury. Sci Rep 2020; 10:18300. [PMID: 33110120 PMCID: PMC7591575 DOI: 10.1038/s41598-020-75171-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Gamma radiation is a commonly used adjuvant treatment for abdominally localized cancer. Since its therapeutic potential is limited due to gastrointestinal (GI) syndrome, elucidation of the regenerative response following radiation-induced gut injury is needed to develop a preventive treatment. Previously, we showed that Krüppel-like factor 4 (KLF4) activates certain quiescent intestinal stem cells (ISCs) marked by Bmi1-CreER to give rise to regenerating crypts following γ irradiation. In the current study, we showed that γ radiation-induced expression of p21Waf1/Cip1 in Bmi1-CreER cells is likely mitigated by MUSASHI-1 (MSI1) acting as a negative regulator of p21Waf1/Cip1 mRNA translation, which promotes exit of the Bmi1-CreER cells from a quiescent state. Additionally, Bmi1-specific Klf4 deletion resulted in decreased numbers of MSI1+ cells in regenerating crypts compared to those of control mice. We showed that KLF4 binds to the Msi1 promoter and activates its expression in vitro. Since MSI1 has been shown to be crucial for crypt regeneration, this finding elucidates a pro-proliferative role of KLF4 during the postirradiation regenerative response. Taken together, our data suggest that the interplay among p21Waf1/Cip1, MSI1 and KLF4 regulates Bmi1-CreER cell survival, exit from quiescence and regenerative potential upon γ radiation-induced injury.
Collapse
Affiliation(s)
- Emilia J Orzechowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Takahito Katano
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Vincent W Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA. .,Department of Physiology and Biophysics, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY, USA.
| |
Collapse
|
17
|
Cragle CE, MacNicol MC, Byrum SD, Hardy LL, Mackintosh SG, Richardson WA, Gray NK, Childs GV, Tackett AJ, MacNicol AM. Musashi interaction with poly(A)-binding protein is required for activation of target mRNA translation. J Biol Chem 2019; 294:10969-10986. [PMID: 31152063 PMCID: PMC6635449 DOI: 10.1074/jbc.ra119.007220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
The Musashi family of mRNA translational regulators controls both physiological and pathological stem cell self-renewal primarily by repressing target mRNAs that promote differentiation. In response to differentiation cues, Musashi can switch from a repressor to an activator of target mRNA translation. However, the molecular events that distinguish Musashi-mediated translational activation from repression are not understood. We have previously reported that Musashi function is required for the maturation of Xenopus oocytes and specifically for translational activation of specific dormant maternal mRNAs. Here, we employed MS to identify cellular factors necessary for Musashi-dependent mRNA translational activation. We report that Musashi1 needs to associate with the embryonic poly(A)-binding protein (ePABP) or the canonical somatic cell poly(A)-binding protein PABPC1 for activation of Musashi target mRNA translation. Co-immunoprecipitation studies demonstrated an increased Musashi1 interaction with ePABP during oocyte maturation. Attenuation of endogenous ePABP activity severely compromised Musashi function, preventing downstream signaling and blocking oocyte maturation. Ectopic expression of either ePABP or PABPC1 restored Musashi-dependent mRNA translational activation and maturation of ePABP-attenuated oocytes. Consistent with these Xenopus findings, PABPC1 remained associated with Musashi under conditions of Musashi target mRNA de-repression and translation during mammalian stem cell differentiation. Because association of Musashi1 with poly(A)-binding proteins has previously been implicated only in repression of Musashi target mRNAs, our findings reveal novel context-dependent roles for the interaction of Musashi with poly(A)-binding protein family members in response to extracellular cues that control cell fate.
Collapse
Affiliation(s)
- Chad E Cragle
- Department of Neurobiology and Developmental Sciences
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences,; Center for Translational Neuroscience
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology,; Arkansas Children's Research Institute
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences
| | | | - William A Richardson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Nicola K Gray
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
| | - Gwen V Childs
- Department of Neurobiology and Developmental Sciences,; Center for Translational Neuroscience
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology,; Arkansas Children's Research Institute
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences,; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and.
| |
Collapse
|
18
|
Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL. EgRBP42 from oil palm enhances adaptation to stress in Arabidopsis through regulation of nucleocytoplasmic transport of stress-responsive mRNAs. PLANT, CELL & ENVIRONMENT 2019; 42:1657-1673. [PMID: 30549047 DOI: 10.1111/pce.13503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
Collapse
Affiliation(s)
- Wan-Chin Yeap
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - Parameswari Namasivayam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Tony Eng Keong Ooi
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - David Ross Appleton
- Sime Darby Plantation Berhad, Research and Development, Biotechnology and Breeding, Sime Darby Technology Centre Sdn. Bhd., Serdang, Malaysia
| | - Harikrishna Kulaveerasingam
- Sime Darby Plantation Berhad, Research and Development, Sime Darby Research Sdn Bhd, R&D Centre-Upstream, Kuala Langat, Malaysia
| | - Chai-Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
19
|
Li W, Flores DC, Füßel J, Euteneuer J, Dathe H, Zou Y, Weisheit W, Wagner V, Petersen J, Mittag M. A Musashi Splice Variant and Its Interaction Partners Influence Temperature Acclimation in Chlamydomonas. PLANT PHYSIOLOGY 2018; 178:1489-1506. [PMID: 30301774 PMCID: PMC6288751 DOI: 10.1104/pp.18.00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/30/2018] [Indexed: 05/09/2023]
Abstract
Microalgae contribute significantly to carbon fixation on Earth. Global warming influences their physiology and growth rates. To understand algal short-term acclimation and adaptation to changes in ambient temperature, it is essential to identify and characterize the molecular components that sense small temperature changes as well as the downstream signaling networks and physiological responses. Here, we used the green biflagellate alga Chlamydomonas reinhardtii as a model system in which to study responses to temperature. We report that an RNA recognition motif (RRM)-containing RNA-binding protein, Musashi, occurs in 25 putative splice variants. These variants bear one, two, and three RRM domains or even lack RRM domains. The most abundant Musashi variant, 12, with a molecular mass of 60 kD, interacts with two clock-relevant members of RNA metabolism, the subunit C3 of the RNA-binding protein CHLAMY1 and the 5'-3' exoribonuclease XRN1. These proteins are able to integrate temperature information by up- or down-regulation of their protein levels in cells grown at low (18°C) or high (28°C) temperature. We further show that the 60-kD Musashi variants with three RRM domains can bind to (UG)7 repeat-containing RNAs and are up-regulated in cells grown at a higher temperature during early night. Intriguingly, the 60-kD Musashi variant 12, as well as C3 and XRN1, confer thermal acclimation to C. reinhardtii, as shown with mutant lines. Our data suggest that these three proteins of the RNA metabolism machinery are key members of the thermal signaling network in C. reinhardtii.
Collapse
Affiliation(s)
- Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - David Carrasco Flores
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Juliane Füßel
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Jan Euteneuer
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Hannes Dathe
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Yong Zou
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Wolfram Weisheit
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics, and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
20
|
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update 2018; 24:245-266. [PMID: 29432538 PMCID: PMC5907346 DOI: 10.1093/humupd/dmx040] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Collapse
Affiliation(s)
- Marco Conti
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| | - Federica Franciosi
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| |
Collapse
|
21
|
Identification of CPE and GAIT elements in 3'UTR of macrophage migration inhibitory factor (MIF) involved in inflammatory response induced by LPS in Ciona robusta. Mol Immunol 2018; 99:66-74. [PMID: 29702356 DOI: 10.1016/j.molimm.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
Innate immune responses face infectious microorganisms by inducing inflammatory responses. Multiple genes within distinct functional categories are coordinately and temporally regulated by transcriptional 'on' and 'off' switches that account for the specificity of gene expression in response to external stimuli. Mechanisms that control transcriptional and post-transcriptional regulation are important in coordinating the initiation and resolution of inflammation. Macrophage migration inhibitory factor (MIF) is an important cytokine that, in Ciona robusta, is related to inflammatory response. It is well known that in C. robusta, formerly known as Ciona intestinalis, the pharynx is involved in the inflammatory reaction induced by lipopolysaccharide (LPS) injection in the body wall. Using this biological system, we describe the identification of two C. robusta MIFs (CrMIF1 and CrMIF2). The phylogenetic tree and modeling support a close relationship with vertebrate MIF family members. CrMIF1 and CrMIF2 possess two evolutionally conserved catalytic sites: a tautomerase and an oxidoreductase site with a conserved CXXC motif. Real-time PCR analysis shows a prompt expression induced by LPS inoculation in CrMIF1 and a late upregulation of CrMIF2 and in silico analyses of 3'UTR show a cis-acting GAIT element and a CPE element in 3'-UTR, which are not present in the 3'-UTR of CrMIF1, suggesting that different transcriptional and post-transcriptional control mechanisms are involved in the regulation of gene expression of MIF during inflammatory response in C. robusta.
Collapse
|
22
|
Odle AK, Beneš H, Melgar Castillo A, Akhter N, Syed M, Haney A, Allensworth-James M, Hardy L, Winter B, Manoharan R, Syed R, MacNicol MC, MacNicol AM, Childs GV. Association of Gnrhr mRNA With the Stem Cell Determinant Musashi: A Mechanism for Leptin-Mediated Modulation of GnRHR Expression. Endocrinology 2018; 159:883-894. [PMID: 29228137 PMCID: PMC5776477 DOI: 10.1210/en.2017-00586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
The cyclic expression of pituitary gonadotropin-releasing hormone receptors (GnRHRs) may be an important checkpoint for leptin regulatory signals. Gonadotrope Lepr-null mice have reduced GnRHR levels, suggesting these receptors may be leptin targets. To determine if leptin stimulated GnRHR directly, primary pituitary cultures or pieces were exposed to 1 to 100 nM leptin. Leptin increased GnRHR protein levels and the percentages of gonadotropes that bound biotinylated analogs of gonadotropin-releasing hormone (bio-GnRH) but had no effect on Gnrhr messenger RNA (mRNA). An in silico analysis revealed three consensus Musashi (MSI) binding elements (MBEs) for this translational control protein in the 3' untranslated region (UTR) of Gnrhr mRNA. Several experiments determined that these Gnrhr mRNA MBE were active: (1) RNA electrophoretic mobility shift assay analyses showed that MSI1 specifically bound Gnrhr mRNA 3'-UTR; (2) RNA immunoprecipitation of pituitary fractions with MSI1 antibody pulled down a complex enriched in endogenous MSI protein and endogenous Gnrhr mRNA; and (3) fluorescence reporter assays showed that MSI1 repressed translation of the reporter coupled to the Gnrhr 3'-UTR. In vitro, leptin stimulation of pituitary pieces reduced Msi1 mRNA in female pituitaries, and leptin stimulation of pituitary cultures reduced MSI1 proteins selectively in gonadotropes identified by binding to bio-GnRH. These findings show that leptin's direct stimulatory actions on gonadotrope GnRHR correlate with a direct inhibition of expression of the posttranscriptional regulator MSI1. We also show MSI1 interaction with the 3'-UTR of Gnrhr mRNA. These findings now open the door to future studies of leptin-modulated posttranscriptional pathways.
Collapse
Affiliation(s)
- Angela K. Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Helen Beneš
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Andrea Melgar Castillo
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Noor Akhter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Mohsin Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Anessa Haney
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melody Allensworth-James
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Linda Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Benjamin Winter
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ragul Manoharan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Raiyan Syed
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Melanie C. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Angus M. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gwen V. Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
23
|
Sutherland JM, Sobinoff AP, Fraser BA, Redgrove KA, Siddall NA, Koopman P, Hime GR, McLaughlin EA. RNA binding protein Musashi‐2 regulates PIWIL1 and TBX1 in mouse spermatogenesis. J Cell Physiol 2017; 233:3262-3273. [DOI: 10.1002/jcp.26168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jessie M. Sutherland
- School of Biomedical Science & PharmacyUniversity of NewcastleCallaghanAustralia
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | - Alexander P. Sobinoff
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
- Telomere Length Regulation GroupChildren's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Barbara A. Fraser
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | - Kate A. Redgrove
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
| | | | - Peter Koopman
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
| | - Gary R. Hime
- Anatomy and NeuroscienceUniversity of MelbourneParkvilleAustralia
| | - Eileen A. McLaughlin
- Priority Research Centre in Reproductive ScienceUniversity of NewcastleCallaghanAustralia
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
24
|
MacNicol MC, Cragle CE, McDaniel FK, Hardy LL, Wang Y, Arumugam K, Rahmatallah Y, Glazko GV, Wilczynska A, Childs GV, Zhou D, MacNicol AM. Evasion of regulatory phosphorylation by an alternatively spliced isoform of Musashi2. Sci Rep 2017; 7:11503. [PMID: 28912529 PMCID: PMC5599597 DOI: 10.1038/s41598-017-11917-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
The Musashi family of RNA binding proteins act to promote stem cell self-renewal and oppose cell differentiation predominantly through translational repression of mRNAs encoding pro-differentiation factors and inhibitors of cell cycle progression. During tissue development and repair however, Musashi repressor function must be dynamically regulated to allow cell cycle exit and differentiation. The mechanism by which Musashi repressor function is attenuated has not been fully established. Our prior work indicated that the Musashi1 isoform undergoes site-specific regulatory phosphorylation. Here, we demonstrate that the canonical Musashi2 isoform is subject to similar regulated site-specific phosphorylation, converting Musashi2 from a repressor to an activator of target mRNA translation. We have also characterized a novel alternatively spliced, truncated isoform of human Musashi2 (variant 2) that lacks the sites of regulatory phosphorylation and fails to promote translation of target mRNAs. Consistent with a role in opposing cell cycle exit and differentiation, upregulation of Musashi2 variant 2 was observed in a number of cancers and overexpression of the Musashi2 variant 2 isoform promoted cell transformation. These findings indicate that alternately spliced isoforms of the Musashi protein family possess distinct functional and regulatory properties and suggest that differential expression of Musashi isoforms may influence cell fate decisions.
Collapse
Affiliation(s)
- Melanie C MacNicol
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,University of Arkansas for Medical Science, Center for Translational Neuroscience, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Chad E Cragle
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - F Kennedy McDaniel
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Linda L Hardy
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Yan Wang
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510182, PR China
| | - Karthik Arumugam
- University of Arkansas for Medical Sciences, Department of Physiology and Biophysics, 4301 W. Markham, Little Rock, 72205, AR, USA.,Center for Genomic Regulation, Department of Gene Regulation, Stem Cells and Cancer, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yasir Rahmatallah
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Galina V Glazko
- University of Arkansas for Medical Sciences, Department of Biomedical Informatics, 4301 W. Markham, Little Rock, 72205, AR, USA
| | | | - Gwen V Childs
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA.,University of Arkansas for Medical Science, Center for Translational Neuroscience, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Daohong Zhou
- University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA
| | - Angus M MacNicol
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, 4301 W. Markham, Little Rock, 72205, AR, USA. .,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, United States.
| |
Collapse
|
25
|
Shou Z, Jin X, He X, Zhao Z, Chen Y, Ye M, Yao J. Overexpression of Musashi-1 protein is associated with progression and poor prognosis of gastric cancer. Oncol Lett 2017; 13:3556-3566. [PMID: 28521458 PMCID: PMC5431268 DOI: 10.3892/ol.2017.5879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Musashi-1, an evolutionally conserved RNA-binding protein, has been implicated in the promotion of pathological stem cell proliferation, including tumorigenesis. The objective of the present study was to evaluate the expression of Musashi-1 protein and its implications in the progression and prognosis of gastric cancer. The expression level of Musashi-1 protein in gastric cancer was determined by western blotting and immunohistochemistry, and compared with the clinicopathological parameters. The present study revealed that the expression level of Musashi-1 protein in gastric cancer was significantly upregulated and correlated with the tumor size, tumor-node-metastasis (TNM) stage, Lauren classification, depth of invasion, vessel invasion, lymph node metastasis and distant metastasis. The mean survival time for patients with low expression levels of Musashi-1 was significantly longer compared with patients with high expression levels of Musashi-1. For each TNM stage, the mean survival time for patients with a low Musashi-1 expression levels was also significantly longer compared with patients with a high Musashi-1 expression level. Notably, TNM stage II patients with a low Musashi-1 expression level demonstrated a longer mean survival time compared with TNM stage I patients with high Musashi-1 expression level (56.8 vs. 42.3 months; P=0.001), and TNM stage III patients with low Musashi-1 expression level exhibited a longer mean survival time compared with TNM stage II patients with a high Musashi-1 expression level (44.0 vs. 33.8 months; P=0.034). Multivariate Cox's regression test demonstrated that Musashi-1 protein expression level was an independent prognostic indicator for the survival rate of the patients with gastric cancer. The results of the present study highlighted an important role for Musashi-1 protein in the progression of gastric cancer. The detection of the Musashi-1 protein expression level alone or in combination with TNM staging may aid the prediction of the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Zhangxuan Shou
- Department of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xue Jin
- Department of Pharmaceutical Sciences, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Zhongsheng Zhao
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Meihua Ye
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jiong Yao
- Department of Medical Records and Statistics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
26
|
Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee JJ, Lakshmanan VK. Computational Modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Sci Rep 2017; 7:43830. [PMID: 28272408 PMCID: PMC5363706 DOI: 10.1038/srep43830] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022] Open
Abstract
The human HOXB13 gene encodes a 284 amino acid transcription factor belonging to the homeobox gene family containing a homeobox and a HoxA13 N-terminal domain. It is highly linked to hereditary prostate cancer, the majority of which is manifested as a result of a Single Nucleotide Polymorphism (SNP). In silico analysis of 95 missense SNP's corresponding to the non-homeobox region of HOXB13 predicted 21 nsSNP's to be potentially deleterious. Among 123 UTR SNPs analysed by UTRScan, rs543028086, rs550968159, rs563065128 were found to affect the UNR_BS, GY-BOX and MBE UTR signals, respectively. Subsequent analysis by PolymiRTS revealed 23 UTR SNPs altering the miRNA binding site. The complete HOXB13_M26 protein structure was modelled using MODELLER v9.17. Computational analysis of the 21 nsSNP's mapped into the HOXB13_M26 protein revealed seven nsSNP's (rs761914407, rs8556, rs138213197, rs772962401, rs778843798, rs770620686 and rs587780165) seriously resulting in a damaging and deleterious effect on the protein. G84E, G135E, and A128V resulted in increased, while, R215C, C66R, Y80C and S122R resulted in decreased protein stability, ultimately predicted to result in the altered binding patterns of HOXB13. While the genotype-phenotype based effects of nsSNP's were assessed, the exact biological and biochemical mechanism driven by the above predicted SNPs still needs to be extensively evaluated by in vivo and GWAS studies.
Collapse
Affiliation(s)
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Taek Won Kang
- Department of Urology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Dong Deuk Kwon
- Department of Urology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Vinoth-Kumar Lakshmanan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-Binding Proteins as Cancer Drivers and Novel Therapeutic Targets. Clin Cancer Res 2017; 23:2143-2153. [PMID: 28143872 DOI: 10.1158/1078-0432.ccr-16-2728] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Aberrant gene expression that drives human cancer can arise from epigenetic dysregulation. Although much attention has focused on altered activity of transcription factors and chromatin-modulating proteins, proteins that act posttranscriptionally can potently affect expression of oncogenic signaling proteins. The RNA-binding proteins (RBP) Musashi-1 (MSI1) and Musashi-2 (MSI2) are emerging as regulators of multiple critical biological processes relevant to cancer initiation, progression, and drug resistance. Following identification of Musashi as a regulator of progenitor cell identity in Drosophila, the human Musashi proteins were initially linked to control of maintenance of hematopoietic stem cells, then stem cell compartments for additional cell types. More recently, the Musashi proteins were found to be overexpressed and prognostic of outcome in numerous cancer types, including colorectal, lung, and pancreatic cancers; glioblastoma; and several leukemias. MSI1 and MSI2 bind and regulate the mRNA stability and translation of proteins operating in essential oncogenic signaling pathways, including NUMB/Notch, PTEN/mTOR, TGFβ/SMAD3, MYC, cMET, and others. On the basis of these activities, MSI proteins maintain cancer stem cell populations and regulate cancer invasion, metastasis, and development of more aggressive cancer phenotypes, including drug resistance. Although RBPs are viewed as difficult therapeutic targets, initial efforts to develop MSI-specific inhibitors are promising, and RNA interference-based approaches to inhibiting these proteins have had promising outcomes in preclinical studies. In the interim, understanding the function of these translational regulators may yield insight into the relationship between mRNA expression and protein expression in tumors, guiding tumor-profiling analysis. This review provides a current overview of Musashi as a cancer driver and novel therapeutic target. Clin Cancer Res; 23(9); 2143-53. ©2017 AACR.
Collapse
Affiliation(s)
- Alexander E Kudinov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yanis Boumber
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Wolfe AR, Ernlund A, McGuinness W, Lehmann C, Carl K, Balmaceda N, Neufeld KL. Suppression of intestinal tumorigenesis in Apc mutant mice upon Musashi-1 deletion. J Cell Sci 2017; 130:805-813. [PMID: 28082422 DOI: 10.1242/jcs.197574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Therapeutic strategies based on a specific oncogenic target are better justified when elimination of that particular oncogene reduces tumorigenesis in a model organism. One such oncogene, Musashi-1 (Msi-1), regulates translation of target mRNAs and is implicated in promoting tumorigenesis in the colon and other tissues. Msi-1 targets include the tumor suppressor adenomatous polyposis coli (Apc), a Wnt pathway antagonist lost in ∼80% of all colorectal cancers. Cell culture experiments have established that Msi-1 is a Wnt target, thus positioning Msi-1 and Apc as mutual antagonists in a mutually repressive feedback loop. Here, we report that intestines from mice lacking Msi-1 display aberrant Apc and Msi-1 mutually repressive feedback, reduced Wnt and Notch signaling, decreased proliferation, and changes in stem cell populations, features predicted to suppress tumorigenesis. Indeed, mice with germline Apc mutations (ApcMin ) or with the Apc1322T truncation mutation have a dramatic reduction in intestinal polyp number when Msi-1 is deleted. Taken together, these results provide genetic evidence that Msi-1 contributes to intestinal tumorigenesis driven by Apc loss, and validate the pursuit of Msi-1 inhibitors as chemo-prevention agents to reduce tumor burden.
Collapse
Affiliation(s)
- Andy R Wolfe
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Amanda Ernlund
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - William McGuinness
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Carl Lehmann
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Kaitlyn Carl
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Nicole Balmaceda
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Kristi L Neufeld
- Department of Molecular Biosciences, University of Kansas, 7049 Haworth Hall, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
29
|
Bernardi Schneider A, Malone RW, Guo J, Homan J, Linchangco G, Witter ZL, Vinesett D, Damodaran L, Janies DA. Molecular evolution of Zika virus as it crossed the Pacific to the Americas. Cladistics 2016; 33:1-20. [DOI: 10.1111/cla.12178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Affiliation(s)
- Adriano Bernardi Schneider
- Department of Bioinformatics and Genomics University of North Carolina at Charlotte 9201 University City Blvd Charlotte 28223‐0001 NC USA
| | - Robert W. Malone
- Atheric Pharmaceutical 2981 Zion Road Troy VA 22974 USA
- Class of 2016 Harvard Medical School Global Clinical Scholars Research Training Program Boston MA USA
| | - Jun‐Tao Guo
- Department of Bioinformatics and Genomics University of North Carolina at Charlotte 9201 University City Blvd Charlotte 28223‐0001 NC USA
| | - Jane Homan
- ioGenetics LLC 3591 Anderson Street, Suite 218 Madison WI 53704 USA
| | - Gregorio Linchangco
- Department of Bioinformatics and Genomics University of North Carolina at Charlotte 9201 University City Blvd Charlotte 28223‐0001 NC USA
| | - Zachary L. Witter
- Department of Bioinformatics and Genomics University of North Carolina at Charlotte 9201 University City Blvd Charlotte 28223‐0001 NC USA
| | - Dylan Vinesett
- Department of Bioinformatics and Genomics University of North Carolina at Charlotte 9201 University City Blvd Charlotte 28223‐0001 NC USA
| | - Lambodhar Damodaran
- Department of Bioinformatics and Genomics University of North Carolina at Charlotte 9201 University City Blvd Charlotte 28223‐0001 NC USA
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics University of North Carolina at Charlotte 9201 University City Blvd Charlotte 28223‐0001 NC USA
| |
Collapse
|
30
|
de Araujo PR, Gorthi A, da Silva AE, Tonapi SS, Vo DT, Burns SC, Qiao M, Uren PJ, Yuan ZM, Bishop AJR, Penalva LOF. Musashi1 Impacts Radio-Resistance in Glioblastoma by Controlling DNA-Protein Kinase Catalytic Subunit. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2271-8. [PMID: 27470713 PMCID: PMC5012509 DOI: 10.1016/j.ajpath.2016.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/13/2016] [Indexed: 12/30/2022]
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation and as a key oncogenic factor in numerous solid tumors, including glioblastoma. To explore the potential use of MSI1 targeting in therapy, we studied MSI1 in the context of radiation sensitivity. Knockdown of MSI1 led to a decrease in cell survival and an increase in DNA damage compared to control in cells treated with ionizing radiation. We subsequently examined mechanisms of double-strand break repair and found that loss of MSI1 reduces the frequency of nonhomologous end-joining. This phenomenon could be attributed to the decreased expression of DNA-protein kinase catalytic subunit, which we have previously identified as a target of MSI1. Collectively, our results suggest a role for MSI1 in double-strand break repair and that its inhibition may enhance the effect of radiotherapy.
Collapse
Affiliation(s)
- Patricia Rosa de Araujo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Aparna Gorthi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Acarizia E da Silva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Sonal S Tonapi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Dat T Vo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Suzanne C Burns
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Mei Qiao
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - Philip J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas; Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas.
| |
Collapse
|
31
|
Klase ZA, Khakhina S, Schneider ADB, Callahan MV, Glasspool-Malone J, Malone R. Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. PLoS Negl Trop Dis 2016; 10:e0004877. [PMID: 27560129 PMCID: PMC4999274 DOI: 10.1371/journal.pntd.0004877] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ongoing Zika virus epidemic in the Americas and the observed association with both fetal abnormalities (primary microcephaly) and adult autoimmune pathology (Guillain-Barré syndrome) has brought attention to this neglected pathogen. While initial case studies generated significant interest in the Zika virus outbreak, larger prospective epidemiology and basic virology studies examining the mechanisms of Zika viral infection and associated pathophysiology are only now starting to be published. In this review, we analyze Zika fetal neuropathogenesis from a comparative pathology perspective, using the historic metaphor of "TORCH" viral pathogenesis to provide context. By drawing parallels to other viral infections of the fetus, we identify common themes and mechanisms that may illuminate the observed pathology. The existing data on the susceptibility of various cells to both Zika and other flavivirus infections are summarized. Finally, we highlight relevant aspects of the known molecular mechanisms of flavivirus replication.
Collapse
Affiliation(s)
- Zachary A Klase
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Svetlana Khakhina
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Adriano De Bernardi Schneider
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Michael V Callahan
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Zika Foundation, College Station, Texas, United States of America
| | - Jill Glasspool-Malone
- Atheric Pharmaceutical, Scottsville, Virginia, United States of America
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Malone
- Atheric Pharmaceutical, Scottsville, Virginia, United States of America
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
32
|
Yang YG, Sari IN, Zia MF, Lee SR, Song SJ, Kwon HY. Tetraspanins: Spanning from solid tumors to hematologic malignancies. Exp Hematol 2016; 44:322-8. [DOI: 10.1016/j.exphem.2016.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 02/06/2023]
|
33
|
Sutherland JM, Siddall NA, Hime GR, McLaughlin EA. RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family. Asian J Androl 2016; 17:529-36. [PMID: 25851660 PMCID: PMC4492041 DOI: 10.4103/1008-682x.151397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactive transcription despite heavy translational requirements for continued growth and differentiation. Hence, spermatogenesis is highly reliant on mechanisms of posttranscriptional regulation of gene expression, facilitated by RNA binding proteins (RBPs), which remain abundantly expressed throughout this process. One such group of proteins is the Musashi family, previously identified as critical regulators of testis germ cell development and meiosis in Drosophila, and also shown to be vital to sperm development and reproductive potential in the mouse. This review describes the role and function of RBPs within the scope of male germ cell development, focusing on our recent knowledge of the Musashi proteins in spermatogenesis. The functional mechanisms utilized by RBPs within the cell are outlined in depth, and the significance of sub-cellular localization and stage-specific expression in relation to the mode and impact of posttranscriptional regulation is also highlighted. We emphasize the historical role of the Musashi family of RBPs in stem cell function and cell fate determination, as originally characterized in Drosophila and Xenopus, and conclude with our current understanding of the differential roles and functions of the mammalian Musashi proteins, Musashi-1 and Musashi-2, with a primary focus on our findings in spermatogenesis. This review highlights both the essential contribution of RBPs to posttranscriptional regulation and the importance of the Musashi family as master regulators of male gamete development.
Collapse
Affiliation(s)
| | | | | | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
34
|
Dailey SC, Febrero Planas R, Rossell Espier A, Garcia-Fernàndez J, Somorjai IML. Asymmetric Distribution of pl10 and bruno2, New Members of a Conserved Core of Early Germline Determinants in Cephalochordates. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2015.00156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
35
|
Reyes JM, Ross PJ. Cytoplasmic polyadenylation in mammalian oocyte maturation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:71-89. [PMID: 26596258 DOI: 10.1002/wrna.1316] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022]
Abstract
Oocyte developmental competence is the ability of the mature oocyte to be fertilized and subsequently drive early embryo development. Developmental competence is acquired by completion of oocyte maturation, a process that includes nuclear (meiotic) and cytoplasmic (molecular) changes. Given that maturing oocytes are transcriptionally quiescent (as are early embryos), they depend on post-transcriptional regulation of stored transcripts for protein synthesis, which is largely mediated by translational repression and deadenylation of transcripts within the cytoplasm, followed by recruitment of specific transcripts in a spatiotemporal manner for translation during oocyte maturation and early development. Motifs within the 3' untranslated region (UTR) of messenger RNA (mRNA) are thought to mediate repression and downstream activation by their association with binding partners that form dynamic protein complexes that elicit differing effects on translation depending on cell stage and interacting proteins. The cytoplasmic polyadenylation (CP) element, Pumilio binding element, and hexanucleotide polyadenylation signal are among the best understood motifs involved in CP, and translational regulation of stored transcripts as their binding partners have been relatively well-characterized. Knowledge of CP in mammalian oocytes is discussed as well as novel approaches that can be used to enhance our understanding of the functional and contributing features to transcript CP and translational regulation during mammalian oocyte maturation. WIREs RNA 2016, 7:71-89. doi: 10.1002/wrna.1316 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Juan M Reyes
- Department of Animal Science, University of California, Davis, CA, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
36
|
Fox RG, Park FD, Koechlein CS, Kritzik M, Reya T. Musashi Signaling in Stem Cells and Cancer. Annu Rev Cell Dev Biol 2015; 31:249-67. [DOI: 10.1146/annurev-cellbio-100814-125446] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raymond G. Fox
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Frederick D. Park
- Department of Pharmacology,
- Moores Cancer Center, and
- Division of Gastroenterology, University of California San Diego School of Medicine, La Jolla, California 92093;
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Claire S. Koechlein
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Marcie Kritzik
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| | - Tannishtha Reya
- Department of Pharmacology,
- Moores Cancer Center, and
- Sanford Consortium for Regenerative Medicine, La Jolla, California 92037
| |
Collapse
|
37
|
MacNicol MC, Cragle CE, Arumugam K, Fosso B, Pesole G, MacNicol AM. Functional Integration of mRNA Translational Control Programs. Biomolecules 2015. [PMID: 26197342 PMCID: PMC4598765 DOI: 10.3390/biom5031580] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease.
Collapse
Affiliation(s)
- Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Chad E Cragle
- Interdisciplinary BioSciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Bruno Fosso
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari 70126, Italy.
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari 70126, Italy.
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70125, Italy.
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
38
|
MacNicol AM, Hardy LL, Spencer HJ, MacNicol MC. Neural stem and progenitor cell fate transition requires regulation of Musashi1 function. BMC DEVELOPMENTAL BIOLOGY 2015; 15:15. [PMID: 25888190 PMCID: PMC4369890 DOI: 10.1186/s12861-015-0064-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/26/2015] [Indexed: 12/28/2022]
Abstract
Background There is increasing evidence of a pivotal role for regulated mRNA translation in control of developmental cell fate transitions. Physiological and pathological stem and progenitor cell self-renewal is maintained by the mRNA-binding protein, Musashi1 through repression of translation of key mRNAs encoding cell cycle inhibitory proteins. The mechanism by which Musashi1 function is modified to allow translation of these target mRNAs under conditions that require inhibition of cell cycle progression, is unknown. Results In this study, we demonstrate that differentiation of primary embryonic rat neural stem/progenitor cells (NSPCs) or human neuroblastoma SH-SY5Y cells results in the rapid phosphorylation of Musashi1 on the evolutionarily conserved site serine 337 (S337). Phosphorylation of this site has been shown to be required for cell cycle control during the maturation of Xenopus oocytes. S337 phosphorylation in mammalian NSPCs and human SH-SY5Y cells correlates with the de-repression and translation of a Musashi reporter mRNA and with accumulation of protein from the endogenous Musashi target mRNA, p21WAF1/CIP1. Inhibition of Musashi regulatory phosphorylation, through expression of a phospho-inhibitory mutant Musashi1 S337A or over-expression of the wild-type Musashi, blocked differentiation of both NSPCs and SH-SY5Y cells. Musashi1 was similarly phosphorylated in NSPCs and SH-SY5Y cells under conditions of nutrient deprivation-induced cell cycle arrest. Expression of the Musashi1 S337A mutant protein attenuated nutrient deprivation-induced NSPC and SH-SY5Y cell death. Conclusions Our data suggest that in response to environmental cues that oppose cell cycle progression, regulation of Musashi function is required to promote target mRNA translation and cell fate transition. Forced modulation of Musashi1 function may present a novel therapeutic strategy to oppose pathological stem cell self-renewal.
Collapse
Affiliation(s)
- Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA. .,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| | - Linda L Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA.
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| | - Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 814, Little Rock, AR, 72205, USA. .,Center for Translational Neuroscience, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR, 72205, USA.
| |
Collapse
|
39
|
Morelos RM, Ramírez JL, García-Gasca A, Ibarra AM. Expression of the myostatin gene in the adductor muscle of the Pacific lion-paw scallop Nodipecten subnodosus in association with growth and environmental conditions. ACTA ACUST UNITED AC 2015; 323:239-55. [PMID: 25731876 DOI: 10.1002/jez.1914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/07/2014] [Accepted: 12/27/2014] [Indexed: 12/25/2022]
Abstract
The cDNA sequence of the myostatin gene in the Pacific lion-paw Nodipecten subnodosus (Ns-mstn) was characterized, and the temporal expression during grow-out was analyzed for the first time in a scallop. Ns-mstn encodes a 459-amino-acid protein in which two propeptide proteolytic sites were identified, the previously recognized (RSKR) and a second one at position 266-269 aa (RRKR). The alternative furin cleavage site could be related with post-translational processing, or it could be a tissue-specific mechanism for signaling activity. The Ns-mstn transcript was located by in situ hybridization in sarcomeres and around the nucleus of muscle fibers. The temporal expression analysis by qPCR in the adductor muscle showed that Ns-mstn expression was significantly different (P < 0.05) between months during the grow-out period, increasing largely during the summer months when both biomass and muscle weight did not increase or even decreased; muscle fiber size and number were found to decrease significantly. Exogenous and endogenous factors such as high temperature and low food availability, as well as gametogenesis and reproduction, can be associated with the growth pattern and Ns-mstn expression changes. Our results indicate that MSTN is involved in adductor muscle growth regulation in N. subnodosus as it occurs in vertebrate skeletal muscle although Ns-mstn expression in non-muscle organs/tissues suggests additional functions.
Collapse
Affiliation(s)
- Rosa M Morelos
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste S.C., La Paz, Mexico
| | | | | | | |
Collapse
|
40
|
Sharifnia P, Jin Y. Regulatory roles of RNA binding proteins in the nervous system of C. elegans. Front Mol Neurosci 2015; 7:100. [PMID: 25628531 PMCID: PMC4290612 DOI: 10.3389/fnmol.2014.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/11/2014] [Indexed: 11/24/2022] Open
Abstract
Neurons have evolved to employ many factors involved in the regulation of RNA processing due to their complex cellular compartments. RNA binding proteins (RBPs) are key regulators in transcription, translation, and RNA degradation. Increasing studies have shown that regulatory RNA processing is critical for the establishment, functionality, and maintenance of neural circuits. Recent advances in high-throughput transcriptomics have rapidly expanded our knowledge of the landscape of RNA regulation, but also raised the challenge for mechanistic dissection of the specific roles of RBPs in complex tissues such as the nervous system. The C. elegans genome encodes many RBPs conserved throughout evolution. The rich analytic tools in molecular genetics and simple neural anatomy of C. elegans offer advantages to define functions of genes in vivo at the level of a single cell. Notably, the discovery of microRNAs has had transformative effects to the understanding of neuronal development, circuit plasticity, and neurological diseases. Here we review recent studies unraveling diverse roles of RBPs in the development, function, and plasticity of C. elegans nervous system. We first summarize the general technologies for studying RBPs in C. elegans. We then focus on the roles of several RBPs that control gene- and cell-type specific production of neuronal transcripts.
Collapse
Affiliation(s)
- Panid Sharifnia
- Division of Biological Sciences, Neurobiology Section, University of CaliforniaSan Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Yishi Jin
- Division of Biological Sciences, Neurobiology Section, University of CaliforniaSan Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, University of CaliforniaSan Diego, La Jolla, CA, USA
| |
Collapse
|
41
|
Katz Y, Li F, Lambert NJ, Sokol ES, Tam WL, Cheng AW, Airoldi EM, Lengner CJ, Gupta PB, Yu Z, Jaenisch R, Burge CB. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. eLife 2014; 3:e03915. [PMID: 25380226 PMCID: PMC4381951 DOI: 10.7554/elife.03915] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
The conserved Musashi (Msi) family of RNA binding proteins are expressed in stem/progenitor and cancer cells, but generally absent from differentiated cells, consistent with a role in cell state regulation. We found that Msi genes are rarely mutated but frequently overexpressed in human cancers and are associated with an epithelial-luminal cell state. Using ribosome profiling and RNA-seq analysis, we found that Msi proteins regulate translation of genes implicated in epithelial cell biology and epithelial-to-mesenchymal transition (EMT), and promote an epithelial splicing pattern. Overexpression of Msi proteins inhibited the translation of Jagged1, a factor required for EMT, and repressed EMT in cell culture and in mammary gland in vivo. Knockdown of Msis in epithelial cancer cells promoted loss of epithelial identity. Our results show that mammalian Msi proteins contribute to an epithelial gene expression program in neural and mammary cell types.
Collapse
Affiliation(s)
- Yarden Katz
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Feifei Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nicole J Lambert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Ethan S Sokol
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Wai-Leong Tam
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Albert W Cheng
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Edoardo M Airoldi
- Department of Statistics, Harvard University, Cambridge, United States
| | - Christopher J Lengner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
42
|
Lagadec C, Vlashi E, Frohnen P, Alhiyari Y, Chan M, Pajonk F. The RNA-binding protein Musashi-1 regulates proteasome subunit expression in breast cancer- and glioma-initiating cells. Stem Cells 2014; 32:135-44. [PMID: 24022895 DOI: 10.1002/stem.1537] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/10/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023]
Abstract
Cancer stem cells (CSCs) or tumor-initiating cells, similar to normal tissue stem cells, rely on developmental pathways, such as the Notch pathway, to maintain their stem cell state. One of the regulators of the Notch pathway is Musashi-1, a mRNA-binding protein. Musashi-1 promotes Notch signaling by binding to the mRNA of Numb, the negative regulator of Notch signaling, thus preventing its translation. CSCs have also been shown to downregulate their 26S proteasome activity in several types of solid tumors, thus making them resistant to proteasome-inhibitors used as anticancer agents in the clinic. Interestingly, the Notch pathway can be inhibited by proteasomal degradation of the Notch intracellular domain (Notch-ICD); therefore, downregulation of the 26S proteasome activity can lead to stabilization of Notch-ICD. Here, we present evidence that the downregulation of the 26S proteasome in CSCs constitutes another level of control by which Musashi-1 promotes signaling through the Notch pathway and maintenance of the stem cell phenotype of this subpopulation of cancer cells. We demonstrate that Musashi-1 mediates the downregulation of the 26S proteasome by binding to the mRNA of NF-YA, the transcriptional factor regulating 26S proteasome subunit expression, thus providing an additional route by which the degradation of Notch-ICD is prevented, and Notch signaling is sustained.
Collapse
Affiliation(s)
- Chann Lagadec
- Department of Radiation Oncology, David Geffen School of Medicine and, University of California Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bhere KV, Haney RA, Ayoub NA, Garb JE. Gene structure, regulatory control, and evolution of black widow venom latrotoxins. FEBS Lett 2014; 588:3891-7. [PMID: 25217831 DOI: 10.1016/j.febslet.2014.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 01/21/2023]
Abstract
Black widow venom contains α-latrotoxin, infamous for causing intense pain. Combining 33 kb of Latrodectus hesperus genomic DNA with RNA-Seq, we characterized the α-latrotoxin gene and discovered a paralog, 4.5 kb downstream. Both paralogs exhibit venom gland specific transcription, and may be regulated post-transcriptionally via musashi-like proteins. A 4 kb intron interrupts the α-latrotoxin coding sequence, while a 10 kb intron in the 3' UTR of the paralog may cause non-sense-mediated decay. Phylogenetic analysis confirms these divergent latrotoxins diversified through recent tandem gene duplications. Thus, latrotoxin genes have more complex structures, regulatory controls, and sequence diversity than previously proposed.
Collapse
Affiliation(s)
- Kanaka Varun Bhere
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University, Lexington, VA, USA
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA.
| |
Collapse
|
44
|
Iacopino F, Angelucci C, Piacentini R, Biamonte F, Mangiola A, Maira G, Grassi C, Sica G. Isolation of cancer stem cells from three human glioblastoma cell lines: characterization of two selected clones. PLoS One 2014; 9:e105166. [PMID: 25121761 PMCID: PMC4133365 DOI: 10.1371/journal.pone.0105166] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/21/2014] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells (CSC) were isolated via a non-adherent neurosphere assay from three glioma cell lines: LI, U87, and U373. Using a clonal assay, two clones (D2 and F11) were selected from spheres derived from LI cells and were characterized for the: expression of stem cell markers (CD133, Nestin, Musashi-1 and Sox2); proliferation; differentiation capability (determined by the expression of GalC, βIII-Tubulin and GFAP); Ca2+ signaling and tumorigenicity in nude mice. Both D2 and F11 clones expressed higher levels of all stem cell markers with respect to the parental cell line. Clones grew more slowly than LI cells with a two-fold increase in duplication time. Markers of differentiation (βIII-Tubulin and GFAP) were expressed at high levels in both LI cells and in neurospheres. The expression of Nestin, Sox2, and βIII-Tubulin was down-regulated in D2 and F11 when cultured in serum-containing medium, whereas Musashi-1 was increased. In this condition, duplication time of D2 and F11 increased without reaching that of LI cells. D2, F11 and parental cells did not express voltage-dependent Ca2+-channels but they exhibited increased intracellular Ca2+ levels in response to ATP. These Ca2+ signals were larger in LI cells and in spheres cultured in serum-containing medium, while they were smaller in serum-free medium. The ATP treatment did not affect cell proliferation. Both D2 and F11 induced the appearance of tumors when ortotopically injected in athymic nude mice at a density 50-fold lower than that of LI cells. All these data indicate that both clones have characteristics of CSC and share the same stemness properties. The findings regarding the expression of differentiation markers and Ca2+-channels show that both clones are unable to reach the terminal differentiation. Both D2 and F11 might represent a good model to improve the knowledge on CSC in glioblastoma and to identify new therapeutic approaches.
Collapse
Affiliation(s)
- Fortunata Iacopino
- Institute of Histology and Embryology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
- * E-mail:
| | - Cristiana Angelucci
- Institute of Histology and Embryology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Annunziato Mangiola
- Institute of Neurosurgery, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulio Maira
- Institute of Neurosurgery, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Gigliola Sica
- Institute of Histology and Embryology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
45
|
Sutherland JM, Fraser BA, Sobinoff AP, Pye VJ, Davidson TL, Siddall NA, Koopman P, Hime GR, McLaughlin EA. Developmental Expression of Musashi-1 and Musashi-2 RNA-Binding Proteins During Spermatogenesis: Analysis of the Deleterious Effects of Dysregulated Expression1. Biol Reprod 2014; 90:92. [DOI: 10.1095/biolreprod.113.115261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
46
|
Cragle C, MacNicol AM. Musashi protein-directed translational activation of target mRNAs is mediated by the poly(A) polymerase, germ line development defective-2. J Biol Chem 2014; 289:14239-51. [PMID: 24644291 DOI: 10.1074/jbc.m114.548271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mRNA-binding protein, Musashi, has been shown to regulate translation of select mRNAs and to control cellular identity in both stem cells and cancer cells. Within the mammalian cells, Musashi has traditionally been characterized as a repressor of translation. However, we have demonstrated that Musashi is an activator of translation in progesterone-stimulated oocytes of the frog Xenopus laevis, and recent evidence has revealed Musashi's capability to function as an activator of translation in mammalian systems. The molecular mechanism by which Musashi directs activation of target mRNAs has not been elucidated. Here, we report a specific association of Musashi with the noncanonical poly(A) polymerase germ line development defective-2 (GLD2) and map the association domain to 31 amino acids within the C-terminal domain of Musashi. We show that loss of GLD2 interaction through deletion of the binding domain or treatment with antisense oligonucleotides compromises Musashi function. Additionally, we demonstrate that overexpression of both Musashi and GLD2 significantly enhances Musashi function. Finally, we report a similar co-association also occurs between murine Musashi and GLD2 orthologs, suggesting that coupling of Musashi to the polyadenylation apparatus is a conserved mechanism to promote target mRNA translation.
Collapse
Affiliation(s)
- Chad Cragle
- From the Interdiciplinary Biomedical Sciences, Departments of Neurobiology and Developmental Sciences
| | - Angus M MacNicol
- Departments of Neurobiology and Developmental Sciences, Physiology and Biophysics, and Genetics, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 722205
| |
Collapse
|
47
|
Törner K, Nakanishi T, Matsuura T, Kato Y, Watanabe H. Optimization of mRNA design for protein expression in the crustacean Daphnia magna. Mol Genet Genomics 2014; 289:707-15. [PMID: 24585253 DOI: 10.1007/s00438-014-0830-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/13/2014] [Indexed: 12/01/2022]
Abstract
The water flea Daphnia is a new model organism for ecological, evolutionary, and toxicological genomics. Detailed functional analysis of genes newly discovered through genomic approaches often requires overexpression of the identified protein. In the present study, we report the microinjection of in vitro-synthesized RNAs into the eggs as a method for overexpressing ubiquitous proteins in Daphnia magna. We injected a 1.3-kb mRNA that coded for the red fluorescent protein (DsRed2) flanked by UTRs from the ubiquitously expressed elongation factor 1α-1 (EF1α-1) into D. magna embryos. DsRed2 fluorescence in the embryos was measured 24 h after microinjection. Unexpectedly, the reporter RNA containing the 522-bp full-length EF1α-1 3' UTR failed to induce fluorescence. To assess reporter expression, the length of the 3' UTR that potentially contained negative regulatory elements of protein expression, including AU-rich regions and Musashi binding elements, was serially reduced from the 3' end. Assessing all injected RNA alternatives, mRNA containing the first 60 bp of the 3' UTR gave rise to the highest fluorescence, 14 times the Daphnia auto-fluorescence. In contrast, mRNA lacking the entire 3' UTR hardly induced any change in fluorescence intensity. This is the first evaluation of UTRs of mRNAs delivered into Daphnia embryos by microinjection for overexpressing proteins. The mRNA with truncated 3' UTRs of Daphnia EF1α-1 will be useful not only for gain-of-function analyses but also for labeling proteins and organelles with fluorescent proteins in Daphnia.
Collapse
Affiliation(s)
- Kerstin Törner
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
48
|
Rutledge CE, Lau HT, Mangan H, Hardy LL, Sunnotel O, Guo F, MacNicol AM, Walsh CP, Lees-Murdock DJ. Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements. PLoS One 2014; 9:e88385. [PMID: 24586322 PMCID: PMC3930535 DOI: 10.1371/journal.pone.0088385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022] Open
Abstract
Regulation of DNMT1 is critical for epigenetic control of many genes and for genome stability. Using phylogenetic analysis we characterized a block of 27 nucleotides in the 3′UTR of Dnmt1 mRNA identical between humans and Xenopus and investigated the role of the individual elements contained within it. This region contains a cytoplasmic polyadenylation element (CPE) and a Musashi binding element (MBE), with CPE binding protein 1 (CPEB1) known to bind to the former in mouse oocytes. The presence of these elements usually indicates translational control by elongation and shortening of the poly(A) tail in the cytoplasm of the oocyte and in some somatic cell types. We demonstrate for the first time cytoplasmic polyadenylation of Dnmt1 during periods of oocyte growth in mouse and during oocyte activation in Xenopus. Furthermore we show by RNA immunoprecipitation that Musashi1 (MSI1) binds to the MBE and that this element is required for polyadenylation in oocytes. As well as a role in oocytes, site-directed mutagenesis and reporter assays confirm that mutation of either the MBE or CPE reduce DNMT1 translation in somatic cells, but likely act in the same pathway: deletion of the whole conserved region has more severe effects on translation in both ES and differentiated cells. In adult cells lacking MSI1 there is a greater dependency on the CPE, with depletion of CPEB1 or CPEB4 by RNAi resulting in substantially reduced levels of endogenous DNMT1 protein and concurrent upregulation of the well characterised CPEB target mRNA cyclin B1. Our findings demonstrate that CPE- and MBE-mediated translation regulate DNMT1 expression, representing a novel mechanism of post-transcriptional control for this gene.
Collapse
Affiliation(s)
- Charlotte E. Rutledge
- Transcriptional Regulation and Epigenetics Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, North Ireland, United Kingdom
| | - Ho-Tak Lau
- Transcriptional Regulation and Epigenetics Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, North Ireland, United Kingdom
| | - Hazel Mangan
- Transcriptional Regulation and Epigenetics Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, North Ireland, United Kingdom
| | - Linda L. Hardy
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Olaf Sunnotel
- Transcriptional Regulation and Epigenetics Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, North Ireland, United Kingdom
| | - Fan Guo
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Angus M. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Colum P. Walsh
- Transcriptional Regulation and Epigenetics Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, North Ireland, United Kingdom
| | - Diane J. Lees-Murdock
- Transcriptional Regulation and Epigenetics Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, North Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Sutherland JM, McLaughlin EA, Hime GR, Siddall NA. The Musashi family of RNA binding proteins: master regulators of multiple stem cell populations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:233-45. [PMID: 23696360 DOI: 10.1007/978-94-007-6621-1_13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In order to maintain their unlimited capacity to divide, stem cells require controlled temporal and spatial protein expression. The Musashi family of RNA-binding proteins have been shown to exhibit this necessary translational control through both repression and activation in order to regulate multiple stem cell populations. This chapter looks in depth at the initial discovery and characterisation of Musashi in the model organism Drosophila, and its subsequent emergence as a master regulator in a number of stem cell populations. Furthermore the unique roles for mammalian Musashi-1 and Musashi-2 in different stem cell types are correlated with the perceived diagnostic power of Musashi expression in specific stem cell derived oncologies. In particular the potential role for Musashi in the identification and treatment of human cancer is considered, with a focus on the role of Musashi-2 in leukaemia. Finally, the manipulation of Musashi expression is proposed as a potential avenue towards the targeted treatment of specific aggressive stem cell cancers.
Collapse
Affiliation(s)
- Jessie M Sutherland
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
50
|
Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2013; 28:15-33. [PMID: 23778311 PMCID: PMC3887408 DOI: 10.1038/leu.2013.184] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 02/08/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets.
Collapse
|