1
|
Calvert SH, Pawlak T, Hessman G, McGouran JF. Rapid diazotransfer for selective lysine labelling. Org Biomol Chem 2024; 22:7976-7981. [PMID: 39283514 DOI: 10.1039/d4ob01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Azide functionalization of protein and peptide lysine residues allows selective bioorthogonal labeling to introduce new, site selective functionaltiy into proteins. Optimised diazotransfer reactions under mild conditions allow aqueous diazotransfer to occur in just 20 min at pH 8.5 on amino acid, peptide and protein targets. In addition, conditons can be modified to selectively label a single lysine residue in both protein targets investigated. Finally, we demonstrate selective modification of proteins containing a single azidolysine using copper(I)-catalyzed triazole formation.
Collapse
Affiliation(s)
- Susannah H Calvert
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Tomasz Pawlak
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Gary Hessman
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
2
|
Borges PHO, Ferreira SB, Silva FP. Recent Advances on Targeting Proteases for Antiviral Development. Viruses 2024; 16:366. [PMID: 38543732 PMCID: PMC10976044 DOI: 10.3390/v16030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Collapse
Affiliation(s)
- Pedro Henrique Oliveira Borges
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Sabrina Baptista Ferreira
- Laboratory of Organic Synthesis and Biological Prospecting, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Floriano Paes Silva
- Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
3
|
Tung CH, Wu JE, Huang MF, Wang WL, Wu YY, Tsai YT, Hsu XR, Lin SH, Chen YL, Hong TM. Ubiquitin-specific peptidase 5 facilitates cancer stem cell-like properties in lung cancer by deubiquitinating β-catenin. Cancer Cell Int 2023; 23:207. [PMID: 37726816 PMCID: PMC10510149 DOI: 10.1186/s12935-023-03059-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Lung cancer has the highest mortality rate in the world, and mounting evidence suggests that cancer stem cells (CSCs) are associated with poor prognosis, recurrence, and metastasis of lung cancer. It is urgent to identify new biomarkers and therapeutic targets for targeting lung CSCs. METHODS We computed the single-sample gene set enrichment analysis (ssGSEA) of 1554 Reactome gene sets to identify the mRNA expression-based stemness index (mRNAsi)-associated pathways using the genome-wide RNA sequencing data of 509 patients from The Cancer Genome Atlas (TCGA) cohort of lung adenocarcinoma (LUAD). Phenotypic effects of ubiquitin-specific peptidase 5 (USP5) on the CSC-like properties and metastasis were examined by in vitro sphere formation assay, migration assay, invasion assay, and in vivo xenografted animal models. Cycloheximide chase assay, co-immunoprecipitation assay, and deubiquitination assay were performed to confirm the effect of USP5 on the deubiquitination of β-catenin. RESULTS We demonstrated that USP5 expression were positively correlated with the stemness-associated signatures and poor outcomes in lung cancer specimens. Silencing of endogenous USP5 reduced CSC-like characteristics, epithelial-mesenchymal transition (EMT), and metastasis in vitro and in vivo. Furthermore, USP5 interacted with β-catenin, which resulted in deubiquitination, stabilization of β-catenin, and activation of Wnt/β-catenin pathway. Accordingly, expression of USP5 was positively correlated with the enrichment score of the Wnt/TCF pathway signature in human lung cancer. Silencing of β-catenin expression suppressed USP5-enhancing sphere formation. Targeting USP5 with the small molecule WP1130 promoted the degradation of β-catenin, and showed great inhibitory effects on sphere formation, migration, and invasion. Finally, we identified a poor-prognosis subset of tumors characterized by high levels of USP5, Wnt signaling score, and Stemness score in both TCGA-LUAD and Rousseaux_2013 datasets. CONCLUSIONS These findings reveal a clinical evidence for USP5-enhanced Wnt/β-catenin signaling in promoting lung cancer stemness and metastasis, implying that targeting USP5 could provide beneficial effects to improve lung cancer therapeutics.
Collapse
Affiliation(s)
- Chia-Hao Tung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
| | - Jia-En Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
| | - Meng-Fan Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
| | - Wen-Lung Wang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Wu
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Tsung Tsai
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xiu-Rui Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
- Biostatistics Consulting Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan.
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Luo ZY, Jiang TX, Zhang T, Xu P, Qiu XB. Ubiquitin Ligase Nrdp1 Controls Autophagy-Associated Acrosome Biogenesis and Mitochondrial Arrangement during Spermiogenesis. Cells 2023; 12:2211. [PMID: 37759433 PMCID: PMC10527437 DOI: 10.3390/cells12182211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is critical to acrosome biogenesis and mitochondrial quality control, but the underlying mechanisms remain unclear. The ubiquitin ligase Nrdp1/RNF41 promotes ubiquitination of the mitophagy-associated Parkin and interacts with the pro-autophagic protein SIP/CacyBP. Here, we report that global deletion of Nrdp1 leads to formation of the round-headed sperm and male infertility by disrupting autophagy. Quantitative proteome analyses demonstrated that the expression of many proteins associated with mitochondria, lysosomes, and acrosomes was dysregulated in either spermatids or sperm of the Nrdp1-deficient mice. Deletion of Nrdp1 increased the levels of Parkin but decreased the levels of SIP, the mitochondrial fission protein Drp1 and the mitochondrial protein Tim23 in sperm, accompanied by the inhibition of autophagy, the impairment of acrosome biogenesis and the disruption of mitochondrial arrangement in sperm. Thus, our results uncover an essential role of Nrdp1 in spermiogenesis and male fertility by promoting autophagy, providing important clues to cope with the related male reproductive diseases.
Collapse
Affiliation(s)
- Zi-Yu Luo
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China; (Z.-Y.L.); (T.-X.J.)
| | - Tian-Xia Jiang
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China; (Z.-Y.L.); (T.-X.J.)
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China;
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Lifeomics, 38 Science Park Road, Beijing 102206, China;
| | - Xiao-Bo Qiu
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China; (Z.-Y.L.); (T.-X.J.)
| |
Collapse
|
5
|
Kitamura N, Galligan JJ. A global view of the human post-translational modification landscape. Biochem J 2023; 480:1241-1265. [PMID: 37610048 PMCID: PMC10586784 DOI: 10.1042/bcj20220251] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Post-translational modifications (PTMs) provide a rapid response to stimuli, finely tuning metabolism and gene expression and maintain homeostasis. Advances in mass spectrometry over the past two decades have significantly expanded the list of known PTMs in biology and as instrumentation continues to improve, this list will surely grow. While many PTMs have been studied in detail (e.g. phosphorylation, acetylation), the vast majority lack defined mechanisms for their regulation and impact on cell fate. In this review, we will highlight the field of PTM research as it currently stands, discussing the mechanisms that dictate site specificity, analytical methods for their detection and study, and the chemical tools that can be leveraged to define PTM regulation. In addition, we will highlight the approaches needed to discover and validate novel PTMs. Lastly, this review will provide a starting point for those interested in PTM biology, providing a comprehensive list of PTMs and what is known regarding their regulation and metabolic origins.
Collapse
Affiliation(s)
- Naoya Kitamura
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| | - James J. Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona 85721, U.S.A
| |
Collapse
|
6
|
Li D, Neo SP, Gunaratne J, Sabapathy K. EPLIN-β is a novel substrate of ornithine decarboxylase antizyme 1 and mediates cellular migration. J Cell Sci 2023; 136:jcs260427. [PMID: 37325974 PMCID: PMC10281260 DOI: 10.1242/jcs.260427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Polyamines promote cellular proliferation. Their levels are controlled by ornithine decarboxylase antizyme 1 (Az1, encoded by OAZ1), through the proteasome-mediated, ubiquitin-independent degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis. Az1-mediated degradation of other substrates such as cyclin D1 (CCND1), DNp73 (TP73) or Mps1 regulates cell growth and centrosome amplification, and the currently known six Az1 substrates are all linked with tumorigenesis. To understand whether Az1-mediated protein degradation might play a role in regulating other cellular processes associated with tumorigenesis, we employed quantitative proteomics to identify novel Az1 substrates. Here, we describe the identification of LIM domain and actin-binding protein 1 (LIMA1), also known as epithelial protein lost in neoplasm (EPLIN), as a new Az1 target. Interestingly, between the two EPLIN isoforms (α and β), only EPLIN-β is a substrate of Az1. The interaction between EPLIN-β and Az1 appears to be indirect, and EPLIN-β is degraded by Az1 in a ubiquitination-independent manner. Az1 absence leads to elevated EPLIN-β levels, causing enhanced cellular migration. Consistently, higher LIMA1 levels correlate with poorer overall survival of colorectal cancer patients. Overall, this study identifies EPLIN-β as a novel Az1 substrate regulating cellular migration.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Suat Peng Neo
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 168583, Singapore
- Institute of Molecular & Cellular Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
7
|
Pashkova N, Gakhar L, Yu L, Schnicker NJ, Minard AY, Winistorfer S, Johnson IE, Piper RC. ANTH domains within CALM, HIP1R, and Sla2 recognize ubiquitin internalization signals. eLife 2021; 10:72583. [PMID: 34821552 PMCID: PMC8648300 DOI: 10.7554/elife.72583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here, we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lokesh Gakhar
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States.,Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States.,Carver College of Medicine NMR Core, University of Iowa, Iowa City, United States
| | - Nicholas J Schnicker
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Stanley Winistorfer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ivan E Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|
8
|
Boyarko B, Hook V. Human Tau Isoforms and Proteolysis for Production of Toxic Tau Fragments in Neurodegeneration. Front Neurosci 2021; 15:702788. [PMID: 34744602 PMCID: PMC8566764 DOI: 10.3389/fnins.2021.702788] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/09/2021] [Indexed: 01/27/2023] Open
Abstract
The human tau protein is implicated in a wide range of neurodegenerative “tauopathy” diseases, consisting of Alzheimer’s disease (AD) and frontotemporal lobar degeneration which includes progressive supranuclear palsy, corticobasal degeneration, Pick’s disease, and FTLD-tau (frontotemporal dementia with parkinsonism caused by MAPT mutations). Tau gene transcripts in the human brain undergo alternative splicing to yield 6 different tau protein isoforms that are expressed in different ratios in neurodegeneration which result in tau pathology of paired-helical filaments, neurofibrillary tangles, and tau fibrillar aggregates with detrimental microtubule destabilization. Protease-mediated tau truncation is an important post-translational modification (PTM) which drives neurodegeneration in a tau fragment-dependent manner. While numerous tau fragments have been identified, knowledge of the proteolytic steps that convert each parent tau isoform into specific truncated tau fragments has not yet been fully defined. An improved understanding of the relationships between tau isoforms and their proteolytic processing to generate neurotoxic tau fragments is important to the field. This review evaluates tau isoform expression patterns including PTMs and mutations that influence proteolysis of tau to generate toxic fragments that drive cognitive deficits in AD and other tauopathy models. This assessment identifies the gap in the field on understanding the details of proteolytic steps used to convert each tau isoform into fragments. Knowledge of the processing mechanisms of tau isoforms can lead to new protease targeted drug strategies to prevent the formation of toxic tau fragments in tauopathy neurodegenerative diseases.
Collapse
Affiliation(s)
- Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Mahmoudvand S, Shokri S. Interactions between SARS coronavirus 2 papain-like protease and immune system: A potential drug target for the treatment of COVID-19. Scand J Immunol 2021; 94:e13044. [PMID: 33872387 PMCID: PMC8250271 DOI: 10.1111/sji.13044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 04/11/2021] [Indexed: 12/01/2022]
Abstract
Coronaviruses (CoVs) are a large family of respiratory viruses which can cause mild to moderate upper respiratory tract infections. Recently, new coronavirus named as Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has been identified which is a major threat to public health. Innate immune responses play a vital role in a host's defence against viruses. Interestingly, CoVs have evolved elaborate strategies to evade the complex system of sensors and signalling molecules to suppress host immunity. SARS‐CoV‐2 papain‐like protease (PLpro), as an important coronavirus enzyme, regulates viral spread and innate immune responses. SCoV‐2 PLpro is multifunctional enzyme with deubiquitinating (DUB) and deISGylating activity. The PLpro can interact with key regulators in signalling pathways such as STING, NF‐κB, cytokine production, MAPK and TGF‐β and hijack those to block the immune responses. Therefore, the PLpro can be as an important target for the treatment of COVID‐19. Until now, several drugs or compounds have been identified that can inhibit PLpro activity. Here we discuss about the dysregulation effects of PLpro on immune system and drugs that have potential inhibitors for SCoV‐2 PLpro.
Collapse
Affiliation(s)
- Shahab Mahmoudvand
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of VirologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Somayeh Shokri
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
- Department of VirologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
10
|
Baarsma HA, Han B, Poppinga WJ, Driessen S, Elzinga CRS, Halayko AJ, Meurs H, Maarsingh H, Schmidt M. Disruption of AKAP-PKA Interaction Induces Hypercontractility With Concomitant Increase in Proliferation Markers in Human Airway Smooth Muscle. Front Cell Dev Biol 2020; 8:165. [PMID: 32328490 PMCID: PMC7160303 DOI: 10.3389/fcell.2020.00165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/28/2020] [Indexed: 01/11/2023] Open
Abstract
With the ability to switch between proliferative and contractile phenotype, airway smooth muscle (ASM) cells can contribute to the progression of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), in which airway obstruction is associated with ASM hypertrophy and hypercontractility. A-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules in various tissues, including ASM cells. AKAPs can anchor the regulatory subunits of protein kinase A (PKA), and guide cellular localization via various targeting domains. Here we investigated whether disruption of the AKAP-PKA interaction, by the cell permeable peptide stearated (st)-Ht31, alters human ASM proliferation and contractility. Treatment of human ASM with st-Ht31 enhanced the expression of protein markers associated with cell proliferation in both cultured cells and intact tissue, although this was not accompanied by an increase in cell viability or cell-cycle progression, suggesting that disruption of AKAP-PKA interaction on its own is not sufficient to drive ASM cell proliferation. Strikingly, st-Ht31 enhanced contractile force generation in human ASM tissue with concomitant upregulation of the contractile protein α-sm-actin. This upregulation of α-sm-actin was independent of mRNA stability, transcription or translation, but was dependent on proteasome function, as the proteasome inhibitor MG-132 prevented the st-Ht31 effect. Collectively, the AKAP-PKA interaction appears to regulate markers of the multi-functional capabilities of ASM, and this alter the physiological function, such as contractility, suggesting potential to contribute to the pathophysiology of airway diseases.
Collapse
Affiliation(s)
- Hoeke A Baarsma
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bing Han
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wilfred J Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Saskia Driessen
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Carolina R S Elzinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Matboli M, Shafei AE, Agwa SH, Elzahy SS, Anwar AK, Mansour AR, Gaber AI, Said AE, Lwis P, Hamdy M. Identification of Novel Molecular Network Expression in Acute Myocardial Infarction. Curr Genomics 2019; 20:340-348. [PMID: 32476991 PMCID: PMC7235391 DOI: 10.2174/1389202920666190820142043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In the current study, we aimed to analyze the hypothesis that human myocardial-specific extracellular RNAs expression could be used for acute myocardial injury(AMI) diagnosis. METHODOLOGY We used bioinformatics' analysis to identify RNAs linked to ubiquitin system and specific to AMI, named, (lncRNA-RP11-175K6.1), (LOC101927740), microRNA-106b-5p (miR-106b-5p) and Anaphase, promoting complex 11 (ANapc11mRNA). We measured the serum expression of the chosen RNAs in 69 individuals with acute coronary syndromes, 31 individuals with angina pectoris without MI and non-cardiac chest pain and 31 healthy control individuals by real-time reverse-transcription PCR. RESULTS Our study revealed a significant decrease in both lncRNA-RP11-175K6.1 and ANapc11mRNA expression of in the sera samples of AMI patients compared to that of the two control groups alongside with significant upregulation of miR-106b-5p. CONCLUSION Of note, the investigated serum RNAs decrease the false discovery rate of AMI to 3.2%.
Collapse
Affiliation(s)
- Marwa Matboli
- Medicinal Biochemistry and Molecular Biology Department, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | - Ayman E. Shafei
- Biomedical Research Department, Military Medical Academy, Cairo, Egypt
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Sara H.A. Agwa
- Clinical Pathology, Medical Ain Shams Research Institute (MASRI), Cairo, Egypt
| | - Sherif Sammir Elzahy
- Cardiovascular Medicine Department, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | | | | | | | | | - Paula Lwis
- Armed Forces College of Medicine, Cairo, Egypt
| | - Marwa Hamdy
- Medicinal Biochemistry and Molecular Biology Department, Ain Shams University, Faculty of Medicine, Cairo, Egypt
| |
Collapse
|
12
|
Serum Exosomal miRNAs Are Associated with Active Pulmonary Tuberculosis. DISEASE MARKERS 2019; 2019:1907426. [PMID: 30886653 PMCID: PMC6388314 DOI: 10.1155/2019/1907426] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 01/28/2023]
Abstract
Introduction Tuberculosis (TB) remains a major threat to human health. Due to the limited accuracy of the current TB diagnostic tests, it is critical to determine novel biomarkers for this disease. Circulating exosomes have been used as diagnostic biomarkers in various diseases. Objective of the Study In this pilot study, we examined the expression of miRNAs as biomarker candidates for the diagnosis of TB infection. Methods Serum-derived exosomes were isolated from TB patients and matched control subjects. The expression of miR-484, miR-425, and miR-96 was examined by RT-PCR methods. Results The expression of miR-484, miR-425, and miR-96 were significantly increased in serum of TB patients which correlated with the TB infection level. A receiver operating characteristic (ROC) curve analysis showed the diagnostic potency of each individual serum exosomal miRNA with an area under the curve (AUC) = 0.72 for miR-484 (p < 0.05), 0.66 for miR-425 (p < 0.05), and 0.62 for miR-96 (p < 0.05). Conclusion These results demonstrate that exosomal miRNAs have diagnostic potential in active tuberculosis. The diagnostic power may be improved when combined with conventional diagnostic markers.
Collapse
|
13
|
Sciortino G, Sanna D, Ugone V, Maréchal JD, Alemany-Chavarria M, Garribba E. Effect of secondary interactions, steric hindrance and electric charge on the interaction of VIVO species with proteins. NEW J CHEM 2019. [DOI: 10.1039/c9nj01956a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of secondary interactions (hydrogen bonds and van der Waals contacts), steric hindrance and electric charge, on the binding of VIV complexes formed by pipemidic and 8-hydroxyquinoline-5-sulphonic acids with ubiquitin and lysozyme is studied.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
- Dipartimento di Chimica e Farmacia
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07040 Sassari
- Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | | | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
14
|
MLN4924, a Protein Neddylation Inhibitor, Suppresses the Growth of Human Chondrosarcoma through Inhibiting Cell Proliferation and Inducing Endoplasmic Reticulum Stress-Related Apoptosis. Int J Mol Sci 2018; 20:ijms20010072. [PMID: 30586948 PMCID: PMC6337205 DOI: 10.3390/ijms20010072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 11/17/2022] Open
Abstract
Chondrosarcoma, a heterogeneous malignant bone tumor, commonly produces cartilage matrix, which generally has no response to conventional therapies. Studies have reported that MLN4924, a NEDD8-activating enzyme inhibitor, achieves antitumor effects against numerous malignancies. In this study, the suppressive effects of MLN4924 on human chondrosarcoma cell lines were investigated using in vitro and in vivo assays, which involved measuring cell viability, cytotoxicity, apoptosis, proliferation, cell cycles, molecule-associated cell cycles, apoptosis, endoplasmic reticulum (ER) stress, and tumor growth in a xenograft mouse model. Our results demonstrated that MLN4924 significantly suppressed cell viability, exhibited cytotoxicity, and stimulated apoptosis through the activation of caspase-3 and caspase-7 in chondrosarcoma cell lines. Furthermore, MLN4924 significantly inhibited cell proliferation by diminishing the phosphorylation of histone H3 to cause G2/M cell cycle arrest. In addition, MLN4924 activated ER stress–related apoptosis by upregulating the phosphorylation of c-Jun N-terminal kinase (JNK), enhancing the expression of GRP78 and CCAAT-enhancer-binding protein homologous protein (CHOP, an inducer of endoplasmic ER stress–related apoptosis) and activating the cleavage of caspase-4. Moreover, MLN4924 considerably inhibited the growth of chondrosarcoma tumors in a xenograft mouse model. Finally, MLN4924-mediated antichondrosarcoma properties can be accompanied by the stimulation of ER stress–related apoptosis, implying that targeting neddylation by MLN4924 is a novel therapeutic strategy for treating chondrosarcoma.
Collapse
|
15
|
Jones CM, Chen JS, Johnson AE, Elmore ZC, Cullati SN, Beckley JR, Gould KL. Relief of the Dma1-mediated checkpoint requires Dma1 autoubiquitination and dynamic localization. Mol Biol Cell 2018; 29:2176-2189. [PMID: 29975113 PMCID: PMC6249794 DOI: 10.1091/mbc.e18-04-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome segregation and cell division are coupled to prevent aneuploidy and cell death. In the fission yeast Schizosaccharomyces pombe, the septation initiation network (SIN) promotes cytokinesis, but upon mitotic checkpoint activation, the SIN is actively inhibited to prevent cytokinesis from occurring before chromosomes have safely segregated. SIN inhibition during the mitotic checkpoint is mediated by the E3 ubiquitin ligase Dma1. Dma1 binds to the CK1-phosphorylated SIN scaffold protein Sid4 at the spindle pole body (SPB), and ubiquitinates it. Sid4 ubiquitination antagonizes the SPB localization of the Pololike kinase Plo1, the major SIN activator, so that SIN signaling is delayed. How this checkpoint is silenced once spindle defects are resolved has not been clear. Here we establish that Dma1 transiently leaves SPBs during anaphase B due to extensive autoubiquitination. The SIN is required for Dma1 to return to SPBs later in anaphase. Blocking Dma1 removal from SPBs by permanently tethering it to Sid4 prevents SIN activation and cytokinesis. Therefore, controlling Dma1’s SPB dynamics in anaphase is an essential step in S. pombe cell division and the silencing of the Dma1-dependent mitotic checkpoint.
Collapse
Affiliation(s)
- Christine M Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alyssa E Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Zachary C Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sierra N Cullati
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
16
|
Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem Pharmacol 2017; 147:128-140. [PMID: 29175422 DOI: 10.1016/j.bcp.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7) has been established to be involved in breast cancer (BCa) progression. However, the role of CXCR7 in different subtype of BCa still remains unclear. Here we note that CXCR7 expression is significantly amplified in Luminal type BCa tissues as compared with Her2 and TNBC types through data-mining in TCGA datasets, and its protein level positively correlates with ERα expression by staining of human BCa tissue. Interestingly, alteration of CXCR7 expression in Luminal type BCa cells is able to modulate the expression of ERα through ubiquitination at post-translational level. Additionally, overexpression of CXCR7 in these cells greatly induces 4-OHT insensitivity in vitro and is associated with earlier recurrence in patients with tamoxifen therapy. Notably, silencing ERα expression potentially rescues the sensitivity of the above cells to 4-OHT, suggesting that elevated level of ERα is responsible for CXCR7-induced 4-OHT insensitivity in Luminal type BCa. Finally, mechanistic analyses show that the reduced BRCA1 (ubiquitin E3 ligase) and elevated OTUB1 (deubiquitinase) expression, which are regulated by CXCR7/ERK1/2 signaling pathway, are responsible for stabilizing ERα protein. In conclusion, our results suggest that targeting CXCR7 may serve as a potential therapeutic strategy for improving the efficacy of BCa patients with tamoxifen therapy.
Collapse
|
17
|
Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, Lopacinski A, Nikolajczyk BS, Monti S, Snyder-Cappione J, Tanasa B, Cardamone MD, Perissi V. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. J Biol Chem 2016; 292:2754-2772. [PMID: 28039360 DOI: 10.1074/jbc.m116.755132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.
Collapse
Affiliation(s)
| | - Anna C Belkina
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | | | | | | | | | | | | | | | - Jennifer Snyder-Cappione
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | - Bogdan Tanasa
- the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | | | | |
Collapse
|
18
|
Cederquist CT, Lentucci C, Martinez-Calejman C, Hayashi V, Orofino J, Guertin D, Fried SK, Lee MJ, Cardamone MD, Perissi V. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab 2016; 6:125-137. [PMID: 28123943 PMCID: PMC5220281 DOI: 10.1016/j.molmet.2016.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Objective Insulin signaling plays a unique role in the regulation of energy homeostasis and the impairment of insulin action is associated with altered lipid metabolism, obesity, and Type 2 Diabetes. The main aim of this study was to provide further insight into the regulatory mechanisms governing the insulin signaling pathway by investigating the role of non-proteolytic ubiquitination in insulin-mediated activation of AKT. Methods The molecular mechanism of AKT regulation through ubiquitination is first dissected in vitro in 3T3-L1 preadipocytes and then validated in vivo using mice with adipo-specific deletion of GPS2, an endogenous inhibitor of Ubc13 activity (GPS2-AKO mice). Results Our results indicate that K63 ubiquitination is a critical component of AKT activation in the insulin signaling pathway and that counter-regulation of this step is provided by GPS2 preventing AKT ubiquitination through inhibition of Ubc13 enzymatic activity. Removal of this negative checkpoint, through GPS2 downregulation or genetic deletion, results in sustained activation of insulin signaling both in vitro and in vivo. As a result, the balance between lipid accumulation and utilization is shifted toward storage in the adipose tissue and GPS2-AKO mice become obese under normal laboratory chow diet. However, the adipose tissue of GPS2-AKO mice is not inflamed, the levels of circulating adiponectin are elevated, and systemic insulin sensitivity is overall improved. Conclusions Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin resistance. Ubc13-mediated ubiquitination of AKT is required for activation of the insulin signaling pathway. GPS2 regulates insulin signaling by inhibiting AKT ubiquitination and activation. Adipo-specific deletion of GPS2 results in increased adiposity and altered lipid flux in the adipocytes. GPS2-AKO mice have higher levels of circulating adiponectin and are insulin sensitive despite being obese.
Collapse
Affiliation(s)
- Carly T Cederquist
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Claudia Lentucci
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Camila Martinez-Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St, Worcester, MA 01605, USA
| | - Vanessa Hayashi
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Joseph Orofino
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - David Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St, Worcester, MA 01605, USA
| | - Susan K Fried
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, 1 Gustav Levy Place, New York, NY 10029, USA
| | - Mi-Jeong Lee
- Department of Medicine, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - M Dafne Cardamone
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St, Boston, MA 02118, USA.
| |
Collapse
|
19
|
USP2a alters chemotherapeutic response by modulating redox. Cell Death Dis 2013; 4:e812. [PMID: 24071644 PMCID: PMC3789164 DOI: 10.1038/cddis.2013.289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022]
Abstract
Cancer cells are characterized by altered ubiquitination of many proteins. The ubiquitin-specific protease 2a (USP2a) is a deubiquitinating enzyme overexpressed in prostate adenocarcinomas, where it exhibits oncogenic behavior in a variety of ways including targeting c-Myc via the miR-34b/c cluster. Here we demonstrate that USP2a induces drug resistance in both immortalized and transformed prostate cells. Specifically, it confers resistance to typically pro-oxidant agents, such as cisplatin (CDDP) and doxorubicin (Doxo), and to taxanes. USP2a overexpression protects from drug-induced oxidative stress by reducing reactive oxygen species (ROS) production and stabilizing the mitochondrial membrane potential (ΔΨ), thus impairing downstream p38 activation and triggering of apoptosis. The molecular mediator of the USP2a protective function is the glutathione (GSH). Through miR-34b/c-driven c-Myc regulation, USP2a increases intracellular GSH content, thus interfering with the oxidative cascade triggered by chemotherapeutic agents. In light of these findings, targeting Myc and/or miR-34b/c might revert chemo-resistance.
Collapse
|
20
|
Lyupina YV, Abaturova SB, Erokhov PA, Orlova OV, Beljelarskaya SN, Mikhailov VS. Proteotoxic stress induced by Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda Sf9 cells. Virology 2012; 436:49-58. [PMID: 23123012 DOI: 10.1016/j.virol.2012.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/02/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022]
Abstract
Baculovirus AcMNPV causes proteotoxicity in Sf9 cells as revealed by accumulation of ubiquitinated proteins and aggresomes in the course of infection. Inhibition of proteasomes by lactacystin increased markedly the stock of ubiquitinated proteins indicating a primary role of proteasomes in detoxication. The proteasomes were present in Sf9 cells as 26S and 20S complexes whose protease activity did not change during infection. Proteasome inhibition caused a delay in the initiation of viral DNA replication suggesting an important role of proteasomes at early stages in infection. However, lactacystin did not affect ongoing replication indicating that active proteasomes are not required for genome amplification. At late stages in infection (24-48 hpi), aggresomes containing the ubiquitinated proteins and HSP/HSC70s showed gradual fusion with the vacuole-like structures identified as lysosomes by antibody to cathepsin D. This result suggests that lysosomes may assist in protection against proteotoxicity caused by baculoviruses absorbing the ubiquitinated proteins.
Collapse
Affiliation(s)
- Yulia V Lyupina
- NK Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Kim J, Kim WJ, Liu Z, Loda M, Freeman MR. The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer. Cell Cycle 2012; 11:1123-30. [PMID: 22370483 DOI: 10.4161/cc.11.6.19550] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The deubiquitinating enzyme USP2a has shown oncogenic properties in many cancer types by impairing ubiquitination of FASN, MDM2, MDMX or Aurora A. Aberrant expression of USP2a has been linked to progression of human tumors, particularly prostate cancer. However, little is known about the role of USP2a or its mechanism of action in bladder cancer. Here, we provide evidence that USP2a is an oncoprotein in bladder cancer cells. Enforced expression of USP2a caused enhanced proliferation, invasion, migration and resistance to several chemotherapeutic reagents, while USP2a loss resulted in slower proliferation, greater chemosensitivity and reduced migratory/invasive capability compared with control cells. USP2a, but not a catalytically inactive mutant, enhanced proliferation in immortalized TRT-HU1 normal human bladder epithelial cells. USP2a bound to cyclin A1 and prevented cyclin A1 ubiquitination, leading to accumulation of cyclin A1 by a block in degradation. Enforced expression of wild type USP2a, but not an inactive USP2a mutant, resulted in cyclin A1 accumulation and increased cell proliferation. We conclude that USP2a impairs ubiquitination and stabilizes an important cell cycle regulator, cyclin A1, raising the possibility of USP2a targeting as a therapeutic strategy against bladder tumors in combination with chemotherapy.
Collapse
Affiliation(s)
- Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|