1
|
Cohen DPA, Martignetti L, Robine S, Barillot E, Zinovyev A, Calzone L. Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and Migration. PLoS Comput Biol 2015; 11:e1004571. [PMID: 26528548 PMCID: PMC4631357 DOI: 10.1371/journal.pcbi.1004571] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/29/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding the etiology of metastasis is very important in clinical perspective, since it is estimated that metastasis accounts for 90% of cancer patient mortality. Metastasis results from a sequence of multiple steps including invasion and migration. The early stages of metastasis are tightly controlled in normal cells and can be drastically affected by malignant mutations; therefore, they might constitute the principal determinants of the overall metastatic rate even if the later stages take long to occur. To elucidate the role of individual mutations or their combinations affecting the metastatic development, a logical model has been constructed that recapitulates published experimental results of known gene perturbations on local invasion and migration processes, and predict the effect of not yet experimentally assessed mutations. The model has been validated using experimental data on transcriptome dynamics following TGF-β-dependent induction of Epithelial to Mesenchymal Transition in lung cancer cell lines. A method to associate gene expression profiles with different stable state solutions of the logical model has been developed for that purpose. In addition, we have systematically predicted alleviating (masking) and synergistic pairwise genetic interactions between the genes composing the model with respect to the probability of acquiring the metastatic phenotype. We focused on several unexpected synergistic genetic interactions leading to theoretically very high metastasis probability. Among them, the synergistic combination of Notch overexpression and p53 deletion shows one of the strongest effects, which is in agreement with a recent published experiment in a mouse model of gut cancer. The mathematical model can recapitulate experimental mutations in both cell line and mouse models. Furthermore, the model predicts new gene perturbations that affect the early steps of metastasis underlying potential intervention points for innovative therapeutic strategies in oncology.
Collapse
Affiliation(s)
- David P. A. Cohen
- Institut Curie, Paris, France
- INSERM, U900, Paris, France
- Mines ParisTech, Fontainebleau, Paris, France
| | - Loredana Martignetti
- Institut Curie, Paris, France
- INSERM, U900, Paris, France
- Mines ParisTech, Fontainebleau, Paris, France
| | - Sylvie Robine
- Institut Curie, Paris, France
- CNRS UMR144, Paris, France
| | - Emmanuel Barillot
- Institut Curie, Paris, France
- INSERM, U900, Paris, France
- Mines ParisTech, Fontainebleau, Paris, France
| | - Andrei Zinovyev
- Institut Curie, Paris, France
- INSERM, U900, Paris, France
- Mines ParisTech, Fontainebleau, Paris, France
| | - Laurence Calzone
- Institut Curie, Paris, France
- INSERM, U900, Paris, France
- Mines ParisTech, Fontainebleau, Paris, France
- * E-mail:
| |
Collapse
|
2
|
Abstract
In stratified epithelial and glandular tissues, homeostasis relies on the self-renewing capacity of stem cells, which are within the basal layer. The p53 family member p63 is an indispensable transcription factor for epithelial morphogenesis and stemness. A splice variant of the transcription factor p63 that lacks an amino-terminal domain, ΔNp63, is selectively found in the basal compartments of several ectoderm-derived tissues such as stratified and glandular epithelia, in which it is required for the replenishment of stem cells. Thus far, the transcriptional programs downstream of p63 in stemness regulation remain incompletely defined. Unveiling the molecular basis of stem cell self-renewal may be relevant in understanding how this process may contribute to cancer development. In this review, we specifically highlight experimental investigations, which suggest that p63 is a marker of normal epithelial stem cells and describe p63 transcriptional targets that may be involved in stemness regulation. Finally, we discuss relevant findings implicating p63 in epithelial cancer stem cell biology.
Collapse
Affiliation(s)
- Gerry Melino
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata," 00133 Rome, Italy. Toxicology Unit, Medical Research Council, Leicester University, Hodgkin Building, P.O. Box 138, Leicester LE1 9HN, UK
| | - Elisa Maria Memmi
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy. Department of Health Sciences, Milan University, 20142 Milan, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata," 00133 Rome, Italy. Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy.
| |
Collapse
|
3
|
Epidermal stem cells and their epigenetic regulation. Int J Mol Sci 2013; 14:17861-80. [PMID: 23999591 PMCID: PMC3794757 DOI: 10.3390/ijms140917861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/06/2013] [Accepted: 08/15/2013] [Indexed: 12/18/2022] Open
Abstract
Stem cells play an essential role in embryonic development, cell differentiation and tissue regeneration. Tissue homeostasis in adults is maintained by adult stem cells resident in the niches of different tissues. As one kind of adult stem cell, epidermal stem cells have the potential to generate diversified types of progeny cells in the skin. Although its biology is still largely unclarified, epidermal stem cells are widely used in stem cell research and regenerative medicine given its easy accessibility and pluripotency. Despite the same genome, cells within an organism have different fates due to the epigenetic regulation of gene expression. In this review, we will briefly discuss the current understanding of epigenetic modulation in epidermal stem cells.
Collapse
|
4
|
Grespi F, Amelio I, Tucci P, Annicchiarico-Petruzzelli M, Melino G. Tissue-specific expression of p73 C-terminal isoforms in mice. Cell Cycle 2012; 11:4474-83. [PMID: 23159862 PMCID: PMC3552929 DOI: 10.4161/cc.22787] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
p73 is a p53 family transcription factor. Due to the presence in the 5' flanking region of two promoters, there are two N-terminal variants, TAp73, which retains a fully active transactivation domain (TA), and ΔNp73, in which the N terminus is truncated. In addition, extensive 3' splicing gives rise to at least seven distinctive isoforms; TAp73-selective knockout highlights its role as a regulator of cell death, senescence and tumor suppressor. ΔNp73-selective knockout, on the other hand, highlights anti-apoptotic function of ΔNp73 and its involvement in DNA damage response. In this work, we investigated the expression pattern of murine p73 C-terminal isoforms. By using a RT-PCR approach, we were able to detect mRNAs of all the C-terminal isoforms described in humans. We characterized their in vivo expression profile in mouse organs and in different mouse developmental stages. Finally, we investigated p73 C-terminal expression profile following DNA damage, ex vivo after primary cultures treatment and in vivo after systemic administration of cytotoxic compounds. Overall, our study first elucidates spatio-temporal expression of mouse p73 isoforms and provides novel insights on their expression-switch under triggered conditions.
Collapse
Affiliation(s)
- Francesca Grespi
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | | | | | | | | |
Collapse
|
5
|
Gude N, Sussman M. Notch signaling and cardiac repair. J Mol Cell Cardiol 2012; 52:1226-32. [PMID: 22465038 DOI: 10.1016/j.yjmcc.2012.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 02/04/2023]
Abstract
Notch signaling is critical for proper heart development and recently has been reported to participate in adult cardiac repair. Notch resides at the cell surface as a single pass transmembrane receptor, transits through the cytoplasm following activation, and acts as a transcription factor upon entering the nucleus. This dynamic and widespread cellular distribution allows for potential interactions with many signaling and binding partners. Notch displays temporal as well as spatial versatility, acting as a strong developmental signal, controlling cell fate determination and lineage commitment, and playing a pivotal role in embryonic and adult stem cell proliferation and differentiation. This review serves as an update of recent literature addressing Notch signaling in the heart, with attention to findings from noncardiac research that provide clues for further interpretation of how the Notch pathway influences cardiac biology. Specific areas of focus include Notch signaling in adult myocardium following pathologic injury, the role of Notch in cardiac progenitor cells with respect to differentiation and cardiac repair, crosstalk between Notch and other cardiac signaling pathways, and emerging aspects of noncanonical Notch signaling in heart.
Collapse
Affiliation(s)
- Natalie Gude
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | |
Collapse
|