1
|
Tingler M, Philipp M, Burkhalter MD. DNA Replication proteins in primary microcephaly syndromes. Biol Cell 2022; 114:143-159. [PMID: 35182397 DOI: 10.1111/boc.202100061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
SCOPE Improper expansion of neural stem and progenitor cells during brain development manifests in primary microcephaly. It is characterized by a reduced head circumference, which correlates with a reduction in brain size. This often corresponds to a general underdevelopment of the brain and entails cognitive, behavioral and motoric retardation. In the past decade significant research efforts have been undertaken to identify genes and the molecular mechanisms underlying microcephaly. One such gene set encompasses factors required for DNA replication. Intriguingly, a growing body of evidence indicates that a substantial number of these genes mediate faithful centrosome and cilium function in addition to their canonical function in genome duplication. Here, we summarize, which DNA replication factors are associated with microcephaly syndromes and to which extent they impact on centrosomes and cilia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Melanie Tingler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, 72074, Germany
| |
Collapse
|
2
|
Dębowski M, Szymańska Z, Kubiak JZ, Lachowicz M. Mathematical Model Explaining the Role of CDC6 in the Diauxic Growth of CDK1 Activity during the M-Phase of the Cell Cycle. Cells 2019; 8:E1537. [PMID: 31795221 PMCID: PMC6952973 DOI: 10.3390/cells8121537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
In this paper we propose a role for the CDC 6 protein in the entry of cells into mitosis. This has not been considered in the literature so far. Recent experiments suggest that CDC 6 , upon entry into mitosis, inhibits the appearance of active CDK 1 and cyclin B complexes. This paper proposes a mathematical model which incorporates the dynamics of kinase CDK 1 , its regulatory protein cyclin B, the regulatory phosphatase CDC 25 and the inhibitor CDC 6 known to be involved in the regulation of active CDK 1 and cyclin B complexes. The experimental data lead us to formulate a new hypothesis that CDC 6 slows down the activation of inactive complexes of CDK 1 and cyclin B upon mitotic entry. Our mathematical model, based on mass action kinetics, provides a possible explanation for the experimental data. We claim that the dynamics of active complexes CDK 1 and cyclin B have a similar nature to diauxic dynamics introduced by Monod in 1949. In mathematical terms we state it as the existence of more than one inflection point of the curve defining the dynamics of the complexes.
Collapse
Affiliation(s)
- Mateusz Dębowski
- Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
| | - Zuzanna Szymańska
- Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland or
- ICM, University of Warsaw, ul. Tyniecka 15/17, 02-630 Warsaw, Poland
| | - Jacek Z. Kubiak
- CNRS, Institute of Genetics and Development of Rennes, Univ Rennes, UMR 6290, Cell Cycle Group, Faculty of Medicine, F-35000 Rennes, France
- Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), ul. Kozielska 4, 01-163 Warsaw, Poland
| | - Mirosław Lachowicz
- Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Yao L, Chen J, Wu X, Jia S, Meng A. Zebrafish cdc6 hypomorphic mutation causes Meier-Gorlin syndrome-like phenotype. Hum Mol Genet 2018; 26:4168-4180. [PMID: 28985365 PMCID: PMC5886151 DOI: 10.1093/hmg/ddx305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/26/2017] [Indexed: 11/13/2022] Open
Abstract
Cell Division Cycle 6 (Cdc6) is a component of pre-replicative complex (preRC) forming on DNA replication origins in eukaryotes. Recessive mutations in ORC1, ORC4, ORC6, CDT1 or CDC6 of the preRC in human cause Meier-Gorlin syndrome (MGS) that is characterized by impaired post-natal growth, short stature and microcephaly. However, vertebrate models of MGS have not been reported. Through N-ethyl-N-nitrosourea mutagenesis and Cas9 knockout, we generate several cdc6 mutant lines in zebrafish. Loss-of-function mutations of cdc6, as manifested by cdc6tsu4305 and cdc6tsu7cd mutants, lead to embryonic lethality due to cell cycle arrest at the S phase and extensive apoptosis. Embryos homozygous for a cdc6 hypomorphic mutation, cdc6tsu21cd, develop normally during embryogenesis. Later on, compared with their wild-type (WT) siblings, cdc6tsu21cd mutant fish show growth retardation, and their body weight and length in adulthood are greatly reduced, which resemble human MGS. Surprisingly, cdc6tsu21cd mutant fish become males with a short life and fail to mate with WT females, suggesting defective reproduction. Overexpression of Cdc6 mutant forms, which mimic human CDC6(T323R) mutation found in a MGS patient, in zebrafish cdc6tsu4305 mutant embryos partially represses cell death phenotype, suggesting that the human CDC6(T323R) mutation is a hypomorph. cdc6tsu21cd mutant fish will be useful to detect more tissue defects and develop medical treatment strategies for MGS patients.
Collapse
Affiliation(s)
- Likun Yao
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Lee I, Kim GS, Bae JS, Kim J, Rhee K, Hwang DS. The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome. J Biol Chem 2017; 292:16267-16276. [PMID: 28827311 DOI: 10.1074/jbc.m116.763680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
The centrosome serves as a major microtubule-organizing center (MTOC). The Cdc6 protein is a component of the pre-replicative complex and a licensing factor for the initiation of chromosome replication and localizes to centrosomes during the S and G2 phases of the cfell cycle of human cells. This cell cycle-dependent localization of Cdc6 to the centrosome motivated us to investigate whether Cdc6 negatively regulates MTOC activity and to determine the integral proteins that comprise the pericentriolar material (PCM). Time-lapse live-cell imaging of microtubule regrowth revealed that Cdc6 depletion increased microtubule nucleation at the centrosomes and that expression of Cdc6 in Cdc6-depleted cells reversed this effect. This increase and decrease in microtubule nucleation correlated with the centrosomal intensities of PCM proteins such as γ-tubulin, pericentrin, CDK5 regulatory subunit-associated protein 2 (CDK5RAP2), and centrosomal protein 192 (Cep192). The regulation of microtubule nucleation and the recruitment of PCM proteins to the centrosome required Cdc6 ATPase activity, as well as a centrosomal localization of Cdc6. These results suggest a novel function for Cdc6 in coordinating centrosome assembly and function.
Collapse
Affiliation(s)
- Inyoung Lee
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gwang Su Kim
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jun Sung Bae
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaeyoun Kim
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Deog Su Hwang
- From the Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Role of Cdc6 During Oogenesis and Early Embryo Development in Mouse and Xenopus laevis. Results Probl Cell Differ 2017; 59:201-211. [PMID: 28247050 DOI: 10.1007/978-3-319-44820-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cdc6 is an important player in cell cycle regulation. It is involved in the regulation of both S-phase and M-phase. Its role during oogenesis is crucial for repression of the S-phase between the first and the second meiotic M-phases, and it also regulates, via CDK1 inhibition, the M-phase entry and exit. This is of special importance for the reactivation of the major M-phase-regulating kinase CDK1 (Cyclin-Dependent Kinase 1) in oocytes entering metaphase II of meiosis and in embryo cleavage divisions, in which precise timing allows coordination between cell cycle events and developmental program of the embryo. In this chapter, we discuss the role of Cdc6 protein in oocytes and early embryos.
Collapse
|
6
|
Ho VWS, Wong MK, An X, Guan D, Shao J, Ng HCK, Ren X, He K, Liao J, Ang Y, Chen L, Huang X, Yan B, Xia Y, Chan LLH, Chow KL, Yan H, Zhao Z. Systems-level quantification of division timing reveals a common genetic architecture controlling asynchrony and fate asymmetry. Mol Syst Biol 2015; 11:814. [PMID: 26063786 PMCID: PMC4501849 DOI: 10.15252/msb.20145857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Coordination of cell division timing is crucial for proper cell fate specification and tissue growth. However, the differential regulation of cell division timing across or within cell types during metazoan development remains poorly understood. To elucidate the systems-level genetic architecture coordinating division timing, we performed a high-content screening for genes whose depletion produced a significant reduction in the asynchrony of division between sister cells (ADS) compared to that of wild-type during Caenorhabditis elegans embryogenesis. We quantified division timing using 3D time-lapse imaging followed by computer-aided lineage analysis. A total of 822 genes were selected for perturbation based on their conservation and known roles in development. Surprisingly, we find that cell fate determinants are not only essential for establishing fate asymmetry, but also are imperative for setting the ADS regardless of cellular context, indicating a common genetic architecture used by both cellular processes. The fate determinants demonstrate either coupled or separate regulation between the two processes. The temporal coordination appears to facilitate cell migration during fate specification or tissue growth. Our quantitative dataset with cellular resolution provides a resource for future analyses of the genetic control of spatial and temporal coordination during metazoan development.
Collapse
Affiliation(s)
- Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiaofang Shao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Hon Chun Kaoru Ng
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kan He
- Department of Biology, Hong Kong Baptist University, Hong Kong, China Center for Stem Cell and Translational Medicine, School of Life Sciences Anhui University, Hefei, China
| | - Jinyue Liao
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingjin Ang
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Long Chen
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaotai Huang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Leanne Lai Hang Chan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - King Lau Chow
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
7
|
Daldello EM, Le T, Poulhe R, Jessus C, Haccard O, Dupré A. Fine-tuning of Cdc6 accumulation by Cdk1 and MAP kinase is essential for completion of oocyte meiotic divisions. J Cell Sci 2015; 128:2482-96. [DOI: 10.1242/jcs.166553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/19/2015] [Indexed: 01/28/2023] Open
Abstract
Vertebrate oocytes proceed through the 1st and the 2nd meiotic division without intervening S-phase to become haploid. Although DNA replication does not take place, unfertilized oocytes acquire the competence to replicate DNA one hour after the 1st meiotic division, by accumulating an essential factor of the replicative machinery, Cdc6. Here, we discovered that the turnover of Cdc6 is precisely regulated in oocytes to avoid inhibition of Cdk1. At meiosis resumption, Cdc6 starts to be expressed but cannot accumulate due to a degradation mechanism activated through Cdk1. During transition from 1st to 2nd meiotic division, Cdc6 is under antagonistic regulation of Cyclin B, whose interaction with Cdc6 stabilizes the protein, and Mos/MAPK that negatively controls its accumulation. Since overexpressing Cdc6 inhibits Cdk1 reactivation and drives oocytes into a replicative interphasic state, the fine-tuning of Cdc6 accumulation is essential to ensure two meiotic waves of Cdk1 activation and to avoid unscheduled DNA replication during meiotic maturation.
Collapse
Affiliation(s)
- Enrico M. Daldello
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Tran Le
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Robert Poulhe
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Catherine Jessus
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Olivier Haccard
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| | - Aude Dupré
- UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
- CNRS, UMR7622-Biologie du Développement, Paris, France
| |
Collapse
|
8
|
Kim GS, Kang J, Bang SW, Hwang DS. Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner. Biochem Biophys Res Commun 2014; 456:763-7. [PMID: 25498505 DOI: 10.1016/j.bbrc.2014.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/24/2022]
Abstract
The Cdc6 protein has been primarily investigated as a component of the pre-replicative complex for the initiation of chromosome replication, which contributes to maintenance of chromosomal integrity. Here, we show that Cdc6 localized to the centrosomes during S and G2 phases of the cell cycle. The centrosomal localization was mediated by Cdc6 amino acid residues 311-366, which are conserved within other Cdc6 homologues and contains a putative nuclear export signal. Deletions or substitutions of the amino acid residues did not allow the proteins to localize to centrosomes. In contrast, DsRed tag fused to the amino acid residues localized to centrosomes. These results indicated that a centrosome localization signal is contained within amino acid residues 311-366. The cell cycle-dependent centrosomal localization of Cdc6 in S and G2 phases suggest a novel function of Cdc6 in centrosomes.
Collapse
Affiliation(s)
- Gwang Su Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jeeheon Kang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung Woong Bang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deog Su Hwang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
9
|
El Dika M, Laskowska-Kaszub K, Koryto M, Dudka D, Prigent C, Tassan JP, Kloc M, Polanski Z, Borsuk E, Kubiak JZ. CDC6 controls dynamics of the first embryonic M-phase entry and progression via CDK1 inhibition. Dev Biol 2014; 396:67-80. [DOI: 10.1016/j.ydbio.2014.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
|