1
|
Liu J, Ke F, Cheng H, Zhou J. Traditional Chinese medicine as targeted treatment for epithelial-mesenchymal transition-induced cancer progression. J Cell Biochem 2019; 120:1068-1079. [PMID: 30431663 DOI: 10.1002/jcb.27588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 01/24/2023]
Abstract
The epithelial-mesenchymal transition (EMT) program, which loosens cell-cell adhesion complexes, endows cells with enhanced migratory and invasive properties. Furthermore, this process facilitates both the development of drug resistance and immunosuppression by tumor cells, which preclude the successful treatment of cancer. Recent research has demonstrated that many signaling pathways are involved in EMT progression. In addition, cancer stem cells (CSCs), vasculogenic mimicry (VM) and the tumor-related immune microenvironment all play important roles in tumor formation. However, there are few reports on the relationships between EMT and these factors. In addition, in recent years, traditional Chinese medicine (TCM) has developed a unique system for treating cancer. In this review, we summarize the crucial signaling pathways associated with the EMT process in cancer patients and discuss the interconnections between EMT and other molecular factors (such as CSCs, VM, and the tumor-related immune microenvironment). We attempt to identify common regulators that might be potential therapeutic targets to thereby optimize tumor treatment. In addition, we outline recent research on TCM approaches that target EMT and thereby provide a foundation for further research on the exact mechanisms by which TCMs affect EMT in cancer.
Collapse
Affiliation(s)
- Jianrong Liu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Ke
- Department of Pathology, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Jinrong Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Lee JK, Ha GH, Kim HS, Lee CW. Oncogenic potential of BEX4 is conferred by Polo-like kinase 1-mediated phosphorylation. Exp Mol Med 2018; 50:1-12. [PMID: 30367032 PMCID: PMC6203768 DOI: 10.1038/s12276-018-0168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
The brain-expressed X-linked 4 (BEX4) gene has been recently identified as a mediator of microtubule hyperacetylation through sirtuin 2 inhibition and is highly overexpressed in human cancers. However, the gain-of-function molecular mechanism of the BEX4 gene in human cancers still needs to be elucidated. This study shows that BEX4 colocalizes and interacts with Polo-like kinase 1 (PLK1) at centrosomes, spindle poles, and midbodies, particularly during mitosis. Interestingly, PLK1-mediated phosphorylation upregulates the stability of BEX4 protein, and the PLK1-BEX4 interaction allows abnormal mitotic cells to adapt to aneuploidy rather than undergo apoptotic cell death. In summary, these results suggest that the oncogenicity of BEX4 is conferred by PLK1-mediated phosphorylation, and thus, the BEX4-PLK1 interaction is a novel oncogenic signal that enables the acquisition of chromosomal aneuploidy.
Collapse
Affiliation(s)
- Jin-Kwan Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Geun-Hyoung Ha
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Hyun-Soo Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Chang-Woo Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Lopez-Mejia IC, Castillo-Armengol J, Lagarrigue S, Fajas L. Role of cell cycle regulators in adipose tissue and whole body energy homeostasis. Cell Mol Life Sci 2018; 75:975-987. [PMID: 28988292 PMCID: PMC11105252 DOI: 10.1007/s00018-017-2668-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 05/22/2024]
Abstract
In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.
Collapse
Affiliation(s)
- I C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - J Castillo-Armengol
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - S Lagarrigue
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - L Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Eve DJ, Sanberg PR, Buzanska L, Sarnowska A, Domanska-Janik K. Human Somatic Stem Cell Neural Differentiation Potential. Results Probl Cell Differ 2018; 66:21-87. [DOI: 10.1007/978-3-319-93485-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
5
|
Chruścik A, Gopalan V, Lam AKY. The clinical and biological roles of transforming growth factor beta in colon cancer stem cells: A systematic review. Eur J Cell Biol 2018; 97:15-22. [PMID: 29128131 DOI: 10.1016/j.ejcb.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-β) is a multipurpose cytokine, which plays a role in many cellular functions such as proliferation, differentiation, migration, apoptosis, cell adhesion and regulation of epithelial to mesenchymal transition. Despite many studies having observed the effect that TGF-β plays in colorectal cancer, its role in the colorectal stem cell population has not been widely observed. METHOD This systematic review will analyse the role of TGF-β in the stem cell population of colorectal cancer. RESULTS The effects on the stem cell phenotype are through the downstream proteins involved in activation of the TGF-β pathway. Its involvement in the initiation of the epithelial to mesenchymal transition (EMT), the effect of colorectal invasion and metastasis regulated through the Smad protein involvement in the EMT, initiation of angiogenesis, promotion of metastasis of colorectal cancer to the liver and its ability to cross-talk with other pathways. CONCLUSION TGF-β is a key player in angiogenesis, tumour growth and metastasis in colon cancer.
Collapse
Affiliation(s)
- Anna Chruścik
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
6
|
Kim DY, Lee J, Kang D, Lee DH, Kim YJ, Hwang SG, Kim DI, Lee CW, Lee KH. Multipotent neurogenic fate of mesenchymal stem cell is determined by Cdk4-mediated hypophosphorylation of Smad-STAT3. Cell Cycle 2016; 15:1787-95. [PMID: 27192561 DOI: 10.1080/15384101.2016.1188230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cyclin-dependent kinase (Cdk) in complex with a corresponding cyclin plays a pivotal role in neurogenic differentiation. In particular, Cdk4 activity acts as a signaling switch to direct human mesenchymal stem cells (MSCs) to neural transdifferentiation. However, the molecular evidence of how Cdk4 activity converts MSCs to neurogenic lineage remains unknown. Here, we found that Cdk4 inhibition in human MSCs enriches the populations of neural stem and progenitor pools rather than differentiated glial and neuronal cell pools. Interestingly, Cdk4 inhibition directly inactivates Smads and subsequently STAT3 signaling by hypophosphorylation, and both Cdk4 and Smads levels are linked during the processes of neural transdifferentiation and differentiation. In summary, our results provide novel molecular evidence in which Cdk4 inhibition leads to directing human MSCs to a multipotent neurogenic fate by inactivating Smads-STAT3 signaling.
Collapse
Affiliation(s)
- Dong-Young Kim
- a Research Core Facility, Center for Molecular Medicine, Samsung Biomedical Research Institute , Seoul , Republic of Korea
| | - Janet Lee
- b Department of Molecular Cell Biology , Sungkyunkwan University School of Medicine , Suwon, Gyeonggi , Republic of Korea
| | - Dongrim Kang
- b Department of Molecular Cell Biology , Sungkyunkwan University School of Medicine , Suwon, Gyeonggi , Republic of Korea
| | - Do-Hyeong Lee
- b Department of Molecular Cell Biology , Sungkyunkwan University School of Medicine , Suwon, Gyeonggi , Republic of Korea
| | - Yoon-Ja Kim
- a Research Core Facility, Center for Molecular Medicine, Samsung Biomedical Research Institute , Seoul , Republic of Korea
| | - Sang-Gu Hwang
- c Division of Radiation Cancer Biology , Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Dong-Ik Kim
- d Department of Vascular Surgery , Sungkyunkwan University School of Medicine , Suwon, Gyeonggi , Republic of Korea.,e Samsung Seoul Hospital , Seoul , Republic of Korea
| | - Chang-Woo Lee
- a Research Core Facility, Center for Molecular Medicine, Samsung Biomedical Research Institute , Seoul , Republic of Korea.,b Department of Molecular Cell Biology , Sungkyunkwan University School of Medicine , Suwon, Gyeonggi , Republic of Korea
| | - Kyung-Hoon Lee
- a Research Core Facility, Center for Molecular Medicine, Samsung Biomedical Research Institute , Seoul , Republic of Korea.,f Department of Anatomy , Sungkyunkwan University School of Medicine , Suwon, Gyeonggi , Republic of Korea
| |
Collapse
|
7
|
Colombier P, Clouet J, Boyer C, Ruel M, Bonin G, Lesoeur J, Moreau A, Fellah BH, Weiss P, Lescaudron L, Camus A, Guicheux J. TGF-β1 and GDF5 Act Synergistically to Drive the Differentiation of Human Adipose Stromal Cells towardNucleus Pulposus-like Cells. Stem Cells 2015; 34:653-67. [DOI: 10.1002/stem.2249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Pauline Colombier
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Johann Clouet
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques; Nantes France
- CHU Nantes, Pharmacie Centrale, PHU 11; Nantes France
| | - Cécile Boyer
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Maëva Ruel
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Gaëlle Bonin
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Julie Lesoeur
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Anne Moreau
- Université de Nantes, UFR Médecine; Nantes France
- CHU Nantes, Service d'Anatomopathologie; Nantes France
| | - Borhane-Hakim Fellah
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- CRIP, Centre de Recherche et d'Investigations Précliniques, ONIRIS; Nantes France
| | - Pierre Weiss
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- CHU Nantes, PHU 4 OTONN; Nantes France
| | - Laurent Lescaudron
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- Université de Nantes, UFR Sciences et Techniques; Nantes France
| | - Anne Camus
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Jérôme Guicheux
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- CHU Nantes, PHU 4 OTONN; Nantes France
| |
Collapse
|
8
|
Lu L, Song HF, Wei JL, Liu XQ, Song WH, Yan BY, Yang GJ, Li A, Yang WL. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression. Biochem Biophys Res Commun 2014; 443:1182-1188. [PMID: 24393841 DOI: 10.1016/j.bbrc.2013.12.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/20/2013] [Indexed: 02/08/2023]
Abstract
Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.
Collapse
Affiliation(s)
- Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China.
| | - Hui-Fang Song
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Jiao-Long Wei
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Xue-Qin Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Wen-Hui Song
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ba-Yi Yan
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Gui-Jiao Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
| | - Ang Li
- Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong, China; Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong, China
| | - Wu-Lin Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China; Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A∗STAR), Singapore.
| |
Collapse
|