1
|
Fu H, Zhong J, Zhao J, Huo L, Wang C, Ma D, Pan W, Sun L, Ren Z, Fan T, Wang Z, Wang W, Lei X, Yu G, Li J, Zhu Y, Geelen D, Liu B. Ultraviolet attenuates centromere-mediated meiotic genome stability and alters gametophytic ploidy consistency in flowering plants. THE NEW PHYTOLOGIST 2024; 243:2214-2234. [PMID: 39039772 DOI: 10.1111/nph.19978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress. Moreover, we found that UV specifically alters the orientation and organization of spindles and phragmoplasts at meiosis II, resulting in meiotic restitution and unreduced gametes. We determined that UV-induced meiotic restitution does not rely on the UV Resistance Locus8-mediated UV perception and the Tapetal Development and Function1- and Aborted Microspores-dependent tapetum development, but possibly occurs via altered JASON function and downregulated Parallel Spindle1. This study provides evidence that UV radiation influences meiotic genome stability and gametophytic ploidy consistency in flowering plants.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiaqi Zhong
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Li Huo
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dexuan Ma
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenjing Pan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Limin Sun
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tianyi Fan
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Ze Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenyi Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guanghui Yu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jing Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yan Zhu
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Bing Liu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
2
|
Takeuchi S, Matsuda T, Ono R, Tsujimoto M, Nishigori C. Mitotic genes are transcriptionally upregulated in the fibroblast irradiated with very low doses of UV-C. Sci Rep 2016; 6:29233. [PMID: 27378355 PMCID: PMC4932599 DOI: 10.1038/srep29233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/14/2016] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet (UV) radiation induces a variety of biological effects, including DNA damage response and cell signaling pathways. We performed transcriptome analysis using microarray in human primary cultured fibroblasts irradiated with UV-C (0.5 or 5 J/m2) and harvested at 4 or 12 h following UV exposure. All transcript data were analyzed by comparison with the corresponding results in non-irradiated (control) cells. The number of genes with significantly altered expression (≥2-fold difference relative to the control) is higher in the sample irradiated with high dose of UV, suggesting that gene expression was UV dose-dependent. Pathway analysis on the upregulated genes at 12 h indicates that the expression of some cell cycle-related genes was predominantly induced irrespective of UV-dose. Interestingly, almost all the genes with significant altered expression were cell cycle-related genes designated as ‘Mitotic Genes’, which function in the spindle assembly checkpoint. Therefore, even a low dose of UV could affect the transcriptional profile.
Collapse
Affiliation(s)
- Seiji Takeuchi
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuou-ku, Kobe 650-0017, Japan
| | - Toshiro Matsuda
- Kindai University Atomic Energy Research Institute, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan
| | - Ryusuke Ono
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuou-ku, Kobe 650-0017, Japan
| | - Mariko Tsujimoto
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuou-ku, Kobe 650-0017, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuou-ku, Kobe 650-0017, Japan
| |
Collapse
|
3
|
Ling Y, Zhang X, Bai Y, Li P, Wei C, Song T, Zheng Z, Guan K, Zhang Y, Zhang B, Liu X, Ma RZ, Cao C, Zhong H, Xu Q. Overexpression of Mps1 in colon cancer cells attenuates the spindle assembly checkpoint and increases aneuploidy. Biochem Biophys Res Commun 2014; 450:1690-5. [PMID: 25063032 DOI: 10.1016/j.bbrc.2014.07.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/25/2022]
Abstract
The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint.
Collapse
Affiliation(s)
- Youguo Ling
- Department of Life Science, Anhui University, Hefei, China; Beijing Institute of Biotechnology, Beijing, China
| | - Xiaojuan Zhang
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Bai
- Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| | - Ting Song
- Beijing Institute of Biotechnology, Beijing, China
| | - Zirui Zheng
- Beijing Institute of Biotechnology, Beijing, China
| | - Kai Guan
- Beijing Institute of Biotechnology, Beijing, China
| | | | - Buchang Zhang
- Department of Life Science, Anhui University, Hefei, China
| | - Xuedong Liu
- University of Colorado at Boulder, Boulder, CO, USA
| | - Runlin Z Ma
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, China.
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China.
| | - Quanbin Xu
- Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|