2
|
Pagani IS, Spinelli O, Mattarucchi E, Pirrone C, Pigni D, Amelotti E, Lilliu S, Boroni C, Intermesoli T, Giussani U, Caimi L, Bolda F, Baffelli R, Candi E, Pasquali F, Lo Curto F, Lanfranchi A, Porta F, Rambaldi A, Porta G. Genomic quantitative real-time PCR proves residual disease positivity in more than 30% samples with negative mRNA-based qRT-PCR in Chronic Myeloid Leukemia. Oncoscience 2014; 1:510-21. [PMID: 25594053 PMCID: PMC4278316 DOI: 10.18632/oncoscience.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022] Open
Abstract
Imatinib mesylate (IM) is the first line therapy against Chronic Myeloid Leukemia, effectively prolonging overall survival. Because discontinuation of treatment is associated with relapse, IM is required indefinitely to maintain operational cure. To assess minimal residual disease, cytogenetic analysis is insensitive in a high background of normal lymphocytes. The qRT-PCR provides highly sensitive detection of BCR-ABL1 transcripts, but mRNA levels are not directly related to the number of leukemic cells, and undetectable results are difficult to interpret. We developed a sensitive approach to detect the number of leukemic cells by a genomic DNA (gDNA) Q-PCR assay based on the break-point sequence, with a formula to calculate the number of Ph-positive cells. We monitored 8 CML patients treated with IM for more than 8 years. We tested each samples by patient specific gDNA Q-PCR in parallel by the conventional techniques. In all samples positive for chimeric transcripts we showed corresponding chimeric gDNA by Q-PCR, and in 32.8% (42/128) of samples with undetectable levels of mRNA we detected the persistence of leukemic cells. The gDNA Q-PCR assay could be a new diagnostic tool used in parallel to conventional techniques to support the clinician's decision to vary or to STOP IM therapy.
Collapse
Affiliation(s)
- Ilaria S Pagani
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy ; Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Orietta Spinelli
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Elia Mattarucchi
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Cristina Pirrone
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Diana Pigni
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Elisabetta Amelotti
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Silvia Lilliu
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Chiara Boroni
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Tamara Intermesoli
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ursula Giussani
- Laboratory of Medical Genetics, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Luigi Caimi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Bolda
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Renata Baffelli
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Francesco Pasquali
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Francesco Lo Curto
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| | - Arnalda Lanfranchi
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Fulvio Porta
- Laboratory of chemical-clinical analysis, Section of Hematology and blood coagulation, Stem Cells laboratory, Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Rambaldi
- Hematology laboratory, USC Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giovanni Porta
- Department of Experimental and Clinical Medicine, Insubria University, Varese, Italy
| |
Collapse
|
3
|
Abollo-Jiménez F, Campos-Sánchez E, Toboso-Navasa A, Vicente-Dueñas C, González-Herrero I, Alonso-Escudero E, González M, Segura V, Blanco O, Martínez-Climent JA, Sánchez-García I, Cobaleda C. Lineage-specific function of Engrailed-2 in the progression of chronic myelogenous leukemia to T-cell blast crisis. Cell Cycle 2014; 13:1717-26. [PMID: 24675889 DOI: 10.4161/cc.28629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In hematopoietic malignancies, oncogenic alterations interfere with cellular differentiation and lead to tumoral development. Identification of the proteins regulating differentiation is essential to understand how they are altered in malignancies. Chronic myelogenous leukemia (CML) is a biphasic disease initiated by an alteration taking place in hematopoietic stem cells. CML progresses to a blast crisis (BC) due to a secondary differentiation block in any of the hematopoietic lineages. However, the molecular mechanisms of CML evolution to T-cell BC remain unclear. Here, we have profiled the changes in DNA methylation patterns in human samples from BC-CML, in order to identify genes whose expression is epigenetically silenced during progression to T-cell lineage-specific BC. We have found that the CpG-island of the ENGRAILED-2 (EN2) gene becomes methylated in this progression. Afterwards, we demonstrate that En2 is expressed during T-cell development in mice and humans. Finally, we further show that genetic deletion of En2 in a CML transgenic mouse model induces a T-cell lineage BC that recapitulates human disease. These results identify En2 as a new regulator of T-cell differentiation whose disruption induces a malignant T-cell fate in CML progression, and validate the strategy used to identify new developmental regulators of hematopoiesis.
Collapse
Affiliation(s)
- Fernando Abollo-Jiménez
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer; CSIC/ Universidad de Salamanca; Campus M. de Unamuno; Institute of Biomedical Research of Salamanca (IBSAL); Salamanca, Spain
| | - Elena Campos-Sánchez
- Centro de Biología Molecular Severo Ochoa; CSIC/Universidad Autónoma de Madrid; Campus de Cantoblanco; Madrid, Spain
| | - Amparo Toboso-Navasa
- Centro de Biología Molecular Severo Ochoa; CSIC/Universidad Autónoma de Madrid; Campus de Cantoblanco; Madrid, Spain; Current affiliation: Immunity and Cancer Laboratory; London Research Institute; Cancer Research UK; London, UK
| | - Carolina Vicente-Dueñas
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer; CSIC/ Universidad de Salamanca; Campus M. de Unamuno; Institute of Biomedical Research of Salamanca (IBSAL); Salamanca, Spain
| | - Inés González-Herrero
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer; CSIC/ Universidad de Salamanca; Campus M. de Unamuno; Institute of Biomedical Research of Salamanca (IBSAL); Salamanca, Spain
| | - Esther Alonso-Escudero
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer; CSIC/ Universidad de Salamanca; Campus M. de Unamuno; Institute of Biomedical Research of Salamanca (IBSAL); Salamanca, Spain
| | - Marcos González
- Department of Hematology, University Hospital of Salamanca; Institute of Biomedical Research of Salamanca; Salamanca, Spain
| | - Víctor Segura
- Bioinformatics Unit; Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| | - Oscar Blanco
- Departamento de Anatomía Patológica; Universidad de Salamanca; Salamanca, Spain
| | | | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer; CSIC/ Universidad de Salamanca; Campus M. de Unamuno; Institute of Biomedical Research of Salamanca (IBSAL); Salamanca, Spain
| | - César Cobaleda
- Centro de Biología Molecular Severo Ochoa; CSIC/Universidad Autónoma de Madrid; Campus de Cantoblanco; Madrid, Spain
| |
Collapse
|