1
|
Liu X, Zhao Y, Feng Y, Wang S, Luo A, Zhang J. Ovarian Aging: The Silent Catalyst of Age-Related Disorders in Female Body. Aging Dis 2025:AD.2024.1468. [PMID: 39965250 DOI: 10.14336/ad.2024.1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Age-related diseases have emerged as a global concern as the population ages. Consequently, understanding the underlying causes of aging and exploring potential anti-aging interventions is imperative. In females, the ovaries serve as the principal organs responsible for ovulation and the production of female hormones. The aging ovaries are related to infertility, menopause, and associated menopausal syndromes, with menopause representing the culmination of ovarian aging. Current evidence indicates that ovarian aging may contribute to dysfunction across multiple organ systems, including, but not limited to, cognitive impairment, osteoporosis, and cardiovascular disease. Nevertheless, due to the widespread distribution of sex hormone receptors throughout the body, ovarian aging affects not only these specific organs but also influences a broader spectrum of age-related diseases in women. Despite this, the impact of ovarian aging on overall age-related diseases has been largely neglected. This review provides a thorough summary of the impact of ovarian aging on age-related diseases, encompassing the nervous, circulatory, locomotor, urinary, digestive, respiratory, and endocrine systems. Additionally, we have outlined prospective therapeutic approaches for addressing both ovarian aging and age-related diseases, with the aim of mitigating their impacts and preserving women's fertility, physical health, and psychological well-being.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanqu Zhao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
Cavalcante MB, Sampaio OGM, Câmara FEA, Schneider A, de Ávila BM, Prosczek J, Masternak MM, Campos AR. Ovarian aging in humans: potential strategies for extending reproductive lifespan. GeroScience 2023; 45:2121-2133. [PMID: 36913129 PMCID: PMC10651588 DOI: 10.1007/s11357-023-00768-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian reserve is a term used to estimate the total number of immature follicles present in the ovaries. Between birth and menopause, there is a progressive decrease in the number of ovarian follicles. Ovarian aging is a continuous physiological phenomenon, with menopause being the clinical mark of the end of ovarian function. Genetics, measured as family history for age at the onset of menopause, is the main determinant. However, physical activity, diet, and lifestyle are important factors that can influence the age of menopause. The low estrogen levels after natural or premature menopause increased the risk for several diseases, resulting in increased mortality risk. Besides that, the decreasing ovarian reserve is associated to reduced fertility. In women with infertility undergoing in vitro fertilization, reduced markers of ovarian reserve, including antral follicular count and anti-Mullerian hormone, are the main indicators of reduced chances of becoming pregnant. Therefore, it becomes clear that the ovarian reserve has a central role in women's life, affecting fertility early in life and overall health later in life. Based on this, the ideal strategy for delaying ovarian aging should have the following characteristics: (1) be initiated in the presence of good ovarian reserve; (2) maintained for a long period; (3) have an action on the dynamics of primordial follicles, controlling the rate of activation and atresia; and (4) safe use in pre-conception, pregnancy, and lactation. In this review, we therefore discuss some of these strategies and its feasibility for preventing a decline in the ovarian reserve.
Collapse
Affiliation(s)
- Marcelo Borges Cavalcante
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, 60.811-905, Brazil.
| | - Olga Goiana Martins Sampaio
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, 60.811-905, Brazil
| | | | - Augusto Schneider
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS, 96010-610, Brazil
| | | | - Juliane Prosczek
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS, 96010-610, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Rolim Campos
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Su H, Fan R, Yang H, You Y, Zhu L, Feng F. Pulmonary benign metastasizing leiomyoma in patients aged 45 years and younger: clinical features and novelty in treatment. BMC Pulm Med 2023; 23:168. [PMID: 37189093 DOI: 10.1186/s12890-023-02406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Pulmonary benign metastasizing leiomyoma (PBML) is the most common extrauterine spread of uterine leiomyoma, and its biological behavior is traditionally thought to be hormone dependent. Studies on older PBML patients have been previously reported, but limited literature has been published regarding the clinical features and treatment of PBML in young women. METHODS A total of 65 cases of PBML in women aged 45 years and younger were reviewed, including 56 cases selected from PubMed and 9 cases from our hospital. The clinical characteristics and management of these patients were analyzed. RESULTS The median age of all the patients at diagnosis was 39.0 years. PBML most commonly presented as bilateral solid lesions (60.9%), with other rare imaging manifestations. The median interval time from a pertinent gynecologic procedure to diagnosis was 6.0 years. A total of 16.7% of patients received careful observation, and all achieved stable status in a median follow-up time of 18.0 months. A total of 71.4% of patients were administered anti-estrogen therapies, including surgical castration (33.3%), gonadotropin-releasing hormone analog (23.8%) and anti-estrogen drugs (14.3%). Eight of 42 patients underwent surgical resection of metastatic lesions. Patients who underwent curative surgery for the removal of pulmonary lesions combined with adjuvant anti-estrogen therapies had favorable outcomes compared with those who only underwent surgical resection. The disease control rates of surgical castration, gonadotropin-releasing hormone analog, and anti-estrogen drugs were 85.7%, 90.0%, and 50.0%, respectively. For two patients, sirolimus (rapamycin) achieved successful relief of symptoms and control of pulmonary lesions without lowering hormone levels and causing estrogen deficiency symptoms. CONCLUSIONS In the absence of standard treatment guidelines for PBML, maintaining a low-estrogen environment using different kinds of antiestrogen therapies has been the mainstream strategy and has satisfying curative effects. A wait-and-see strategy might be an option, but therapeutic approaches must be contemplated when complications or symptoms progress. For PBML in young women, the negative effect on ovarian function of anti-estrogen treatment, especially surgical castration, should be considered. Sirolimus might be a new treatment option for young PBML patients, especially for those who want to preserve ovarian function.
Collapse
Affiliation(s)
- Hao Su
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, China
| | - Rong Fan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, China
| | - Yan You
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, China.
| | - Fengzhi Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric & Gynecologic Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuai Fu Yuan, Dong Cheng District, Beijing, China.
| |
Collapse
|
4
|
Dong L, Teh DBL, Kennedy BK, Huang Z. Unraveling female reproductive senescence to enhance healthy longevity. Cell Res 2023; 33:11-29. [PMID: 36588114 PMCID: PMC9810745 DOI: 10.1038/s41422-022-00718-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023] Open
Abstract
In a society where women often want successful careers and equal opportunities to men, the early nature of ovarian aging often forces women to make difficult life choices between career and family development. Fertility in women begins to decline after the age of 37 years and it is rare for pregnancies to occur after 45. This reproductive decline in women is inevitable and culminates in menopause, which is a major driver of age-related diseases. In a world where biomedical advances are leading to modifiable biological outcomes, it is time to focus on mitigating female reproductive senescence to maintain fertility and preserve age-related hormonal functions, with the goal of providing increased life choices and enhancing healthspan. To date, reproductive longevity research remains an understudied field. More needs to be done to unravel the biology of the ovarian follicles, which are the functional units of reproductive lifespan and are comprised of cell types including the oocyte (female gamete) and a group of specialized supporting somatic cells. Biological attempts to maintain the quality and quantity of follicles in animal models through manipulating pathways involved in aging can potentially prolong female reproductive lifespan and healthspan. Here, we summarize the molecular events driving ovarian aging and menopause and the interventional strategies to offset these events. Developing solutions to female reproductive senescence will open doors to discover ways to enhance true healthy longevity for both men and women.
Collapse
Affiliation(s)
- Lu Dong
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brian Keith Kennedy
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.
| |
Collapse
|
5
|
Su YQ, Yin Y, Guo J, Gong X, Tian Y, Shi L. MTOR-mediated interaction between the oocyte and granulosa cells regulates the development and function of both compartments in mice. Biol Reprod 2022; 107:76-84. [PMID: 35552649 DOI: 10.1093/biolre/ioac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Coordinated development of the germline and the somatic compartments within a follicle is an essential prerequisite for creating a functionally normal oocyte. Bi-directional communication between the oocyte and the granulosa cells enables the frequent interchange of metabolites and signals that support the development and functions of both compartments. Mechanistic target of Rapamycin (MTOR), a conserved serine/threonine kinase and a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation, is emerging as a major player that regulates many factes of oocyte and follicle development. Here, we summarized our recent observations on the role of oocyte- and granulosa cell-expressed MTOR in the control of the oocyte's and granulosa cell's own development, as well as the development of one another, and provided new data that further strengthen the role of cumulus cell-expressed MTOR in synchronizing oocyte and follicle development. Inhibition of MTOR induced oocyte meiotic resumption in cultured large antral follicles, as well as cumulus expansion and the expression of cumulus expansion-related transcripts in cumulus-oocyte complexes in vitro. In vivo, the activity of MTOR in cumulus cells was diminished remarkablely by 4 h after hCG administration. These results thus suggest that activation of MTOR in cumulus cells contributes to the maintenance of oocyte meiotic arrest before the LH surge. Based on the observations made by us here and previously, we propose that MTOR is an essential mediator of the bi-directional communication between the oocyte and granulosa cells that regulates the development and function of both compartments.
Collapse
Affiliation(s)
- You-Qiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, PR China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, PR China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Jing Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Xuhong Gong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Yufeng Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Lanying Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, PR China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
6
|
Côrtes LS, Silveira HS, Lupi LA, de Mello Santos T, Cavariani MM, Domeniconi RF, Gaiotte LB, de Morais Oliveira DA, Justulin LA, de Almeida Chuffa LG. Maternal protein restriction impairs nutrition and ovarian histomorphometry without changing p38MAPK and PI3K-AKT-mTOR signaling in adult rat ovaries. Life Sci 2021; 264:118693. [PMID: 33130082 DOI: 10.1016/j.lfs.2020.118693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
AIMS Because an adequate protein supply is detrimental for the maintenance of folliculogenesis and ovulation, we evaluated the impact of maternal low protein diet on nutritional parameters, estrous cycle, ovarian histomorphometry, and on the expression of metabolic and survival signaling molecules in different follicular stages. MAIN METHODS Twenty Wistar pregnant rats were divided into two groups: the normoprotein (NP) group, composed of animals that received 17% protein, and a low-protein (LP) group, composed of animals that received 6% protein during gestation and lactation period. After weaning, female rats were fed with standard diet until the 120-days-old. KEY FINDINGS LP animals showed reduced body mass index, total body weight, energy intake, feed efficiency, and visceral fat. The ovarian tissue presented vascular congestion and fat accumulation in the medulla, followed by a significant reduction in the amount of primordial and primary follicles. In addition, the number of atretic follicles was higher in LP than in NP animals. Maternal undernutrition also resulted in increased levels of estradiol (E2) and progesterone (P4) while testosterone (T) was unchanged in the offspring. Although discrete changes in p38MAPK and in PI3K-AKT-mTOR immunostaining were observed in the ovarian follicles and corpus luteum in LP, no differences were found at their protein levels. SIGNIFICANCE Maternal protein restriction alters estrous cycle and histomorphometry of the offspring's ovary without changing the levels of intracellular regulatory molecules in adulthood. These morphofunctional changes may alter reproductive performance in female offspring, highlighting maternal dietary conditions as an important factor for offspring reproductive health.
Collapse
Affiliation(s)
- Lucas Silva Côrtes
- Faculty of Medicine of Botucatu, São Paulo State University-UNESP, 18618-687 Botucatu, SP, Brazil
| | - Henrique Spaulonci Silveira
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil
| | - Luiz Antonio Lupi
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil
| | - Talita de Mello Santos
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil
| | - Marilia Martins Cavariani
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil
| | - Raquel Fantin Domeniconi
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil
| | - Letícia Barbosa Gaiotte
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil
| | - Diego Augusto de Morais Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences (IBB), São Paulo State University-UNESP, 18618-689, Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Abstract
Mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase of the phosphatidylinositol kinase-related kinase family that regulates cell growth, metabolism, and autophagy. Extensive research has linked mTOR to several human diseases including cancer, neurodegenerative disorders, and aging. In this review, recent publications regarding the mechanisms underlying the role of mTOR in female reproduction under physiological and pathological conditions are summarized. Moreover, we assess whether strategies to improve or suppress mTOR expression could have therapeutic potential for reproductive diseases like premature ovarian failure, polycystic ovarian syndrome, and endometriosis.
Collapse
|
8
|
|
9
|
Abstract
Inhibitors of mTOR, including clinically available rapalogs such as rapamycin (Sirolimus) and Everolimus, are gerosuppressants, which suppress cellular senescence. Rapamycin slows aging and extends life span in a variety of species from worm to mammals. Rapalogs can prevent age-related diseases, including cancer, atherosclerosis, obesity, neurodegeneration and retinopathy and potentially rejuvenate stem cells, immunity and metabolism. Here, I further suggest how rapamycin can be combined with metformin, inhibitors of angiotensin II signaling (Losartan, Lisinopril), statins (simvastatin, atorvastatin), propranolol, aspirin and a PDE5 inhibitor. Rational combinations of these drugs with physical exercise and an anti-aging diet (Koschei formula) can maximize their anti-aging effects and decrease side effects.
Collapse
|
10
|
Dou X, Sun Y, Li J, Zhang J, Hao D, Liu W, Wu R, Kong F, Peng X, Li J. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell 2017; 16:825-836. [PMID: 28544226 PMCID: PMC5506398 DOI: 10.1111/acel.12617] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/26/2022] Open
Abstract
Although age‐related ovarian failure in female mammals cannot be reversed, recent strategies have focused on improving reproductive capacity with age, and rapamycin is one such intervention that has shown a potential for preserving the ovarian follicle pool and preventing premature ovarian failure. However, the application is limited because of its detrimental effects on follicular development and ovulation during long‐term treatment. Herein, we shortened the rapamycin administration to 2 weeks and applied the protocol to both young (8 weeks) and middle‐aged (8 months) mouse models. Results showed disturbances in ovarian function during and shortly after treatment; however, all the treated animals returned to normal fertility 2 months later. Following natural mating, we observed prolongation of ovarian lifespan in both mouse models, with the most prominent effect occurring in mice older than 12 months. The effects of transient rapamycin treatment on ovarian lifespan were reflected in the preservation of primordial follicles, increases in oocyte quality, and improvement in the ovarian microenvironment. These data indicate that short‐term rapamycin treatment exhibits persistent effects on prolonging ovarian lifespan no matter the age at initiation of treatment. In order not to disturb fertility in young adults, investigators should in the future consider applying the protocol later in life so as to delay menopause in women, and at the same time increase ovarian lifespan.
Collapse
Affiliation(s)
- Xiaowei Dou
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing Jiangsu 211166 China
| | - Yan Sun
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing Jiangsu 211166 China
| | - Jiazhao Li
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing Jiangsu 211166 China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing Jiangsu 211166 China
| | - Dandan Hao
- College of Animal Science and Veterinary Medicine; Heilongjiang Bayi Agricultural University; Daqing Heilongjiang 163319 China
| | - Wenwen Liu
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing Jiangsu 211166 China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine; Heilongjiang Bayi Agricultural University; Daqing Heilongjiang 163319 China
| | - Feifei Kong
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing Jiangsu 211166 China
| | - Xiaoxu Peng
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing Jiangsu 211166 China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing Jiangsu 211166 China
| |
Collapse
|
11
|
Leontieva OV, Demidenko ZN, Blagosklonny MV. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program). Oncotarget 2016; 6:23238-48. [PMID: 26177051 PMCID: PMC4695114 DOI: 10.18632/oncotarget.4836] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/24/2015] [Indexed: 11/30/2022] Open
Abstract
In proliferating cells, mTOR is active and promotes cell growth. When the cell cycle is arrested, then mTOR converts reversible arrest to senescence (geroconversion). Rapamycin and other rapalogs suppress geroconversion, maintaining quiescence instead. Here we showed that ATP-competitive kinase inhibitors (Torin1 and PP242), which inhibit both mTORC1 and TORC2, also suppressed geroconversion. Despite inhibition of proliferation (in proliferating cells), mTOR inhibitors preserved re-proliferative potential (RP) in arrested cells. In p21-arrested cells, Torin 1 and PP242 detectably suppressed geroconversion at concentrations as low as 1-3 nM and 10-30 nM, reaching maximal gerosuppression at 30 nM and 300 nM, respectively. Near-maximal gerosuppression coincided with inhibition of p-S6K(T389) and p-S6(S235/236). Dual mTOR inhibitors prevented senescent morphology and hypertrophy. Our study warrants investigation into whether low doses of dual mTOR inhibitors will prolong animal life span and delay age-related diseases. A new class of potential anti-aging drugs can be envisioned.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Zoya N Demidenko
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
12
|
Abstract
The most physiological type of cell cycle arrest - namely, contact inhibition in dense culture - is the least densely studied. Despite cell cycle arrest, confluent cells do not become senescent. We recently described that mTOR (target of rapamycin) is inactive in contact-inhibited cells. Therefore, conversion from reversible arrest to senescence (geroconversion) is suppressed. I this Perspective, we further extended the gerosuppression model. While causing senescence in regular cell density, etoposide failed to cause senescence in contact-inhibited cells. A transient reactivation of mTOR favored geroconversion in etoposide-treated confluent cells. Like p21, p16 did not cause senescence in high cell density. We discuss that suppression of geroconversion in confluent and contact-inhibited cultures mimics gerosuppression in the organism. We confirmed that levels of p-S6 were low in murine tissues in the organism compared with mouse embryonic fibroblasts in cell culture, whereas p-Akt was reciprocally high in the organism.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elms and Carlson Streets, Buffalo, NY 14263, USA
| | - Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elms and Carlson Streets, Buffalo, NY 14263, USA
| |
Collapse
|
13
|
Leontieva OV, Paszkiewicz GM, Blagosklonny MV. Comparison of rapamycin schedules in mice on high-fat diet. Cell Cycle 2015; 13:3350-6. [PMID: 25485580 DOI: 10.4161/15384101.2014.970491] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
At a wide range of doses, rapamycin extends life span in mice. It was shown that intraperitoneal injections (i.p.) of rapamycin prevent weight gain in mice on high-fat diet (HFD). We further investigated the effect of rapamycin on weight gain in female C57BL/6 mice on HFD started at the age of 7.5 months. By the age of 16 and 23 months, mice on HFD weighed significantly more (52 vs 33 g; p = 0.0001 and 70 vs 38 g; p < 0.0001, respectively) than mice on low fat diet (LFD). The i.p. administration of 1.5 mg/kg rapamycin, 3 times a week every other week, completely prevented weight gain, whereas administration of rapamycin by oral gavash did not. Rapamycin given in the drinking water slightly decreased weight gain by the age of 23 months. In addition, metabolic parameters were evaluated at the age of 16 and 23 months, 6 and 13 days after last rapamycin administration, respectively. Plasma leptin levels strongly correlated with body weight, (P < 0.0001, r=0.86), suggesting that the difference in weight was due to fat tissue mass. Levels of insulin, glucose, triglycerides and IGF1 were not statistically different in all groups, indicating that these courses of rapamycin treatment did not impair metabolic parameters at least after rapamycin discontinuation. Despite rapamycin discontinuation, cardiac levels of phospho-S6 and pAKT(S473) were low in the i.p.-treated group. This continuous effect of rapamycin can be explained by prevention of obesity in the i.p. group. We conclude that intermittent i.p. administration of rapamycin prevents weight gain without causing gross metabolic abnormalities. Intermittent gavash administration minimally affected weight gain. Potential clinical applications are discussed.
Collapse
Affiliation(s)
- Olga V Leontieva
- a Cell Stress Biology; Roswell Park Cancer Institute ; Buffalo , NY USA
| | | | | |
Collapse
|
14
|
Popovich IG, Anisimov VN, Zabezhinski MA, Semenchenko AV, Tyndyk ML, Yurova MN, Blagosklonny MV. Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol Ther 2014; 15:586-92. [PMID: 24556924 DOI: 10.4161/cbt.28164] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Target of Rapamycin (TOR) is involved in cellular and organismal aging. Rapamycin extends lifespan and delays cancer in mice. It is important to determine the minimum effective dose and frequency of its administration that still extends lifespan and prevents cancer. Previously we tested 1.5 mg/kg of rapamycin given subcutaneously 6 times per two weeks followed by a two-week break (1.5 × 6/bi-weekly schedule: total of 6 injections during a 4-week period). This intermittent treatment prolonged lifespan and delayed cancer in cancer-prone female FVB/N HER-2/neu mice. Here, the dose was decreased from 1.5 mg/kg to 0.45 mg/kg per injection. This treatment was started at the age of 2 months (group Rap-2), 4 months (Rap-4), and 5 months (Rap-5). Three control groups received the solvent from the same ages. Rapamycin significantly delayed cancer and decreased tumor burden in Rap-2 and Rap-5 groups, increased mean lifespan in Rap-4 and Rap-5 groups, and increased maximal lifespan in Rap-2 and Rap-5 groups. In Rap-4 group, mean lifespan extension was achieved without significant cancer prevention. The complex relationship between life-extension and cancer-prevention depends on both the direct effect of rapamycin on cancer cells and its anti-aging effect on the organism, which in turn prevents cancer indirectly. We conclude that total doses of rapamycin that are an order of magnitude lower than standard total doses can detectably extend life span in cancer-prone mice.
Collapse
Affiliation(s)
- Irina G Popovich
- Department of Carcinogenesis and Oncogerontology; N.N. Petrov Research Institute of Oncology; St. Petersburg, Russia
| | - Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology; N.N. Petrov Research Institute of Oncology; St. Petersburg, Russia
| | - Mark A Zabezhinski
- Department of Carcinogenesis and Oncogerontology; N.N. Petrov Research Institute of Oncology; St. Petersburg, Russia
| | - Anna V Semenchenko
- Department of Carcinogenesis and Oncogerontology; N.N. Petrov Research Institute of Oncology; St. Petersburg, Russia
| | - Margarita L Tyndyk
- Department of Carcinogenesis and Oncogerontology; N.N. Petrov Research Institute of Oncology; St. Petersburg, Russia
| | - Maria N Yurova
- Department of Carcinogenesis and Oncogerontology; N.N. Petrov Research Institute of Oncology; St. Petersburg, Russia
| | | |
Collapse
|
15
|
Leontieva OV, Blagosklonny MV. M(o)TOR of pseudo-hypoxic state in aging: rapamycin to the rescue. Cell Cycle 2014; 13:509-15. [PMID: 24496328 DOI: 10.4161/cc.27973] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A groundbreaking publication by Sinclair and coworkers has illuminated the pseudo-hypoxic state in aging and its reversibility. Remarkably, these data also fit the mTOR-centered model of aging. Here we discuss that the mTOR pathway can cause cellular pseudo-hypoxic state, manifested by HIF-1 expression and lactate production under normoxia. We found that rapamycin decreased HIF-1 and lactate levels in proliferating and senescent cells in vitro. This reduction was independent from mitochondrial respiration: rapamycin decreased lactate production in normoxia, hypoxia, and in the presence of the OXPHOS inhibitor oligomycin. We suggest that pseudo-hypoxic state is not necessarily caused by mitochondrial dysfunction, but instead mitochondrial dysfunction may be secondary to mTOR-driven hyperfunctions. Clinical applications of rapamycin for reversing pseudo-hypoxic state and lactate acidosis are discussed.
Collapse
Affiliation(s)
- Olga V Leontieva
- Cell Stress Biology; Roswell Park Cancer Institute; Buffalo, NY USA
| | | |
Collapse
|
16
|
Blagosklonny MV. Aging is not programmed: genetic pseudo-program is a shadow of developmental growth. Cell Cycle 2013; 12:3736-42. [PMID: 24240128 PMCID: PMC3905065 DOI: 10.4161/cc.27188] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aging is not and cannot be programmed. Instead, aging is a continuation of developmental growth, driven by genetic pathways such as mTOR. Ironically, this is often misunderstood as a sort of programmed aging. In contrast, aging is a purposeless quasi-program or, figuratively, a shadow of actual programs. “The brightest flame casts the darkest shadow.” -George Martin
Collapse
|