1
|
Dragnev KH, Dragnev CPC, Lubet RA. Major hurdles to the use of tyrosine kinase inhibitors in clinical prevention/interception studies: Do preclinical studies with EGFR inhibitors suggest approaches to overcome some of the limitations. Front Cell Dev Biol 2023; 11:1170444. [PMID: 37169023 PMCID: PMC10165497 DOI: 10.3389/fcell.2023.1170444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
There are major hurdles to the use of tyrosine kinase inhibitors (TKIs) and any other agents with significant toxicities (which means practically the preponderance of potential effective agents) in the context of prevention/anti-progression (interception) studies. We will discuss epidermal growth factor receptor (EGFR) inhibitors as examples, both in a primary prevention setting, where agent(s) are administered to individuals with no cancer but who might be considered at higher risk due to a variety of factors, and in anti-progression/interception studies, where agent(s) are administered to persons with known preinvasive lesions (e.g., colon adenomas, lung nodules, ductal carcinoma in situ (DCIS), or pancreatic intraepithelial neoplasia (PanIN) lesions in the pancreas) in an attempt to reverse or inhibit progression of these lesions. Multiple potential hurdles will be examined, including: a) toxicity of agents, b) the likely range of subtypes of cancers affected by a given treatment (e.g., EGFR inhibitors against EGFR mutant lung adenocarcinomas), c) the availability of practical endpoints besides the blocking of cancer formation or pharmacokinetics related to the agents administered in a primary prevention study, and d) the interpretation of the regression or blockage of new preinvasive lesions in the anti-progression study. Such an anti-progression approach may help address some of the factors commented on regarding primary prevention (toxicity, potential target organ cancer subtypes) but still leaves major questions regarding interpretation of modulation of preinvasive endpoints when it may not be clear how frequently they progress to clinical cancer. Additionally, we address whether certain recent preclinical findings might be able to reduce the toxicities associated with these agents and perhaps even increase their potential efficacy. Antibodies and TKIs other than the EGFR inhibitors are not discussed because few if any had been tested as monotherapies in humans, making their efficacy harder to predict, and because a number have relatively rare but quite striking toxicities. Furthermore, most of the practical hurdles raised regarding the EGFR inhibitors are relevant to the other TKIs. Finally, we briefly discuss whether early detection employing blood or serum samples may allow identification of high-risk groups more amenable to agents with greater toxicity.
Collapse
Affiliation(s)
| | | | - Ronald A. Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, United States
| |
Collapse
|
2
|
Sourouni M, Opitz C, Radke I, Kiesel L, Tio J, Götte M, von Wahlde M. Establishment of a
3D
co‐culture model to investigate the role of primary fibroblasts in ductal carcinoma in situ of the breast. Cancer Rep (Hoboken) 2022; 6:e1771. [PMID: 36534078 PMCID: PMC10075300 DOI: 10.1002/cnr2.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is a precursor form of breast cancer. 13%-50% of these lesions will progress to invasive breast cancer, but the individual progression risk cannot be estimated. Therefore, all patients receive the same therapy, resulting in potential overtreatment of a large proportion of patients. AIMS The role of the tumor microenvironment (TME) and especially of fibroblasts appears to be critical in DCIS development and a better understanding of their role may aid individualized treatment. METHODS AND RESULTS Primary fibroblasts isolated from benign or malignant punch biopsies of the breast and MCF10DCIS.com cells were seeded in a 3D cell culture system. The fibroblasts were cultured in a type I collagen layer beneath a Matrigel layer with MCF10DCIS.com cells. Dye-quenched (DQ) fluorescent collagen I and IV were used in collagen and Matrigel layer respectively to demonstrate proteolysis. Confocal microscopy was performed on day 2, 7, and 14 to reveal morphological changes, which could indicate the transition to an invasive phenotype. MCF10DCIS.com cells form smooth, round spheroids in co-culture with non-cancer associated fibroblasts (NAFs). Spheroids in co-culture with tumor-associated fibroblasts (TAFs) appear irregularly shaped and with an uneven surface; similar to spheroids formed from invasive cells. Therefore, these morphological changes represent the progression of an in situ to an invasive phenotype. In addition, TAFs show a higher proteolytic activity compared to NAFs. The distance between DCIS cells and fibroblasts decreases over time. CONCLUSION The TAFs seem to play an important role in the progression of DCIS to invasive breast cancer. The better characterization of the TME could lead to the identification of DCIS lesions with high or low risk of progression. This could enable personalized oncological therapy, prevention of overtreatment and individualized hormone replacement therapy after DCIS.
Collapse
Affiliation(s)
- Marina Sourouni
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Carl Opitz
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Isabel Radke
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Ludwig Kiesel
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Joke Tio
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Martin Götte
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Marie‐Kristin von Wahlde
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| |
Collapse
|
3
|
Pupa SM, Ligorio F, Cancila V, Franceschini A, Tripodo C, Vernieri C, Castagnoli L. HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers (Basel) 2021; 13:cancers13194778. [PMID: 34638263 PMCID: PMC8507865 DOI: 10.3390/cancers13194778] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Breast cancer (BC) is not a single disease, but a group of different tumors, and altered HER2 expression defines a particularly aggressive subtype. Although HER2 pharmacological inhibition has dramatically improved the prognosis of HER2-positive BC patients, there is still an urgent need for improved knowledge of HER2 biology and mechanisms underlying HER2-driven aggressiveness and drug susceptibility. Emerging data suggest that the clinical efficacy of molecularly targeted therapies is related to their ability to target breast cancer stem cells (BCSCs), a population that is not only self-sustaining and able to differentiate into distinct lineages, but also contributes to tumor growth, aggressiveness, metastasis and treatment resistance. The aim of this review is to provide an overview of how the full-length HER2 receptor, the d16HER2 splice variant and the truncated p95HER2 variants are involved in the regulation and maintenance of BCSCs. Abstract HER2 overexpression/amplification occurs in 15–20% of breast cancers (BCs) and identifies a highly aggressive BC subtype. Recent clinical progress has increased the cure rates of limited-stage HER2-positive BC and significantly prolonged overall survival in patients with advanced disease; however, drug resistance and tumor recurrence remain major concerns. Therefore, there is an urgent need to increase knowledge regarding HER2 biology and implement available treatments. Cancer stem cells (CSCs) represent a subset of malignant cells capable of unlimited self-renewal and differentiation and are mainly considered to contribute to tumor onset, aggressiveness, metastasis, and treatment resistance. Seminal studies have highlighted the key role of altered HER2 signaling in the maintenance/enrichment of breast CSCs (BCSCs) and elucidated its bidirectional communication with stemness-related pathways, such as the Notch and Wingless/β-catenin cascades. d16HER2, a splice variant of full-length HER2 mRNA, has been identified as one of the most oncogenic HER2 isoform significantly implicated in tumorigenesis, epithelial-mesenchymal transition (EMT)/stemness and the response to targeted therapy. In addition, expression of a heterogeneous collection of HER2 truncated carboxy-terminal fragments (CTFs), collectively known as p95HER2, identifies a peculiar subgroup of HER2-positive BC with poor prognosis, with the p95HER2 variants being able to regulate CSC features. This review provides a comprehensive overview of the current evidence regarding HER2-/d16HER2-/p95HER2-positive BCSCs in the context of the signaling pathways governing their properties and describes the future prospects for targeting these components to achieve long-lasting tumor control.
Collapse
Affiliation(s)
- Serenella M. Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
- Correspondence: ; Tel.: +39-022-390-2573; Fax: +39-022-390-2692
| | - Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (F.L.); or (C.V.)
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy; (V.C.); (C.T.)
| | - Alma Franceschini
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy; (V.C.); (C.T.)
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (F.L.); or (C.V.)
- IFOM the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, AmadeoLab, Via Amadeo 42, 20133 Milan, Italy; (A.F.); (L.C.)
| |
Collapse
|
4
|
Sai S, Kim EH, Vares G, Suzuki M, Yu D, Horimoto Y, Hayashi M. Combination of carbon-ion beam and dual tyrosine kinase inhibitor, lapatinib, effectively destroys HER2 positive breast cancer stem-like cells. Am J Cancer Res 2020; 10:2371-2386. [PMID: 32905515 PMCID: PMC7471364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023] Open
Abstract
To investigate whether carbon-ion beam alone, or in combination with lapatinib, has a beneficial effect in targeting HER2-positive breast cancer stem-like cells (CSCs) compared to that of X-rays, human breast CSCs derived from BT474 and SKBR3 cell lines were treated with a carbon-ion beam or X-rays irradiation alone or in combination with lapatinib, and then cell viability, spheroid formation assays, apoptotic analyses, gene expression analysis of related genes, and immunofluorescent γ-H2AX foci assays were performed. Spheroid formation assays confirmed that ESA+/CD24- cells have CSC properties compared to ESA-/CD24+ cells. CSCs were more highly enriched after X-ray irradiation combined with lapatinib, whereas carbon-ion beam combined with lapatinib significantly decreased the proportion of CSCs. Carbon-ion beam combined with lapatinib significantly suppressed spheroid formation compared to X-rays combined with lapatinib or carbon ion beam alone. Cell cycle analysis showed that carbon ion beam combined with lapatinib predominantly enhanced sub-G1 and G2/M arrested population compared to that of carbon-ion beam, X-ray treatments alone. Carbon-ion beam combined with lapatinib significantly enhanced apoptosis and carbon-ion beam alone dose-dependently increased autophagy-related expression of Beclin1 and in combination with lapatinib greatly enhanced ATG7 expression at protein levels. In addition, a large-sized γH2AX foci in CSCs were induced by carbon ion beam combined with lapatinib treatment in CSCs compared to cells receiving X-rays or carbon-ion beam alone. Altogether, combination of carbon-ion beam irradiation and lapatinib has a high potential to kill HER2-positive breast CSCs, causing severe irreparable DNA damage, enhanced autophagy, and apoptosis.
Collapse
Affiliation(s)
- Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Guillaume Vares
- Okinawa Institute of Science and Technology (OIST), Advanced Medical Instrumentation UnitTancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Dong Yu
- School of Radiological Medicine and Protection, Medical College of Soochow UniversitySuzhou 215006, China
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiro Hayashi
- Breast Center, Dokkyo Medical University Hospital880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| |
Collapse
|
5
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
6
|
Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast and ovarian carcinoma by targeting their stem cell compartment. Cell Oncol (Dordr) 2019; 42:815-828. [DOI: 10.1007/s13402-019-00464-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
|
7
|
Guo Q, Li VZ, Nichol JN, Huang F, Yang W, Preston SEJ, Talat Z, Lefrère H, Yu H, Zhang G, Basik M, Gonçalves C, Zhan Y, Plourde D, Su J, Torres J, Marques M, Habyan SA, Bijian K, Amant F, Witcher M, Behbod F, McCaffrey L, Alaoui-Jamali M, Giannakopoulos NV, Brackstone M, Postovit LM, Del Rincón SV, Miller WH. MNK1/NODAL Signaling Promotes Invasive Progression of Breast Ductal Carcinoma In Situ. Cancer Res 2019; 79:1646-1657. [PMID: 30659022 PMCID: PMC6513674 DOI: 10.1158/0008-5472.can-18-1602] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/02/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
The mechanisms by which breast cancers progress from relatively indolent ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) are not well understood. However, this process is critical to the acquisition of metastatic potential. MAPK-interacting serine/threonine-protein kinase 1 (MNK1) signaling can promote cell invasion. NODAL, a morphogen essential for embryogenic patterning, is often reexpressed in breast cancer. Here we describe a MNK1/NODAL signaling axis that promotes DCIS progression to IDC. We generated MNK1 knockout (KO) or constitutively active MNK1 (caMNK1)-expressing human MCF-10A-derived DCIS cell lines, which were orthotopically injected into the mammary glands of mice. Loss of MNK1 repressed NODAL expression, inhibited DCIS to IDC conversion, and decreased tumor relapse and metastasis. Conversely, caMNK1 induced NODAL expression and promoted IDC. The MNK1/NODAL axis promoted cancer stem cell properties and invasion in vitro. The MNK1/2 inhibitor SEL201 blocked DCIS progression to invasive disease in vivo. In clinical samples, IDC and DCIS with microinvasion expressed higher levels of phospho-MNK1 and NODAL versus low-grade (invasion-free) DCIS. Cumulatively, our data support further development of MNK1 inhibitors as therapeutics for preventing invasive disease. SIGNIFICANCE: These findings provide new mechanistic insight into progression of ductal carcinoma and support clinical application of MNK1 inhibitors to delay progression of indolent ductal carcinoma in situ to invasive ductal carcinoma.
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Vivian Z Li
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jessica N Nichol
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Fan Huang
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - William Yang
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Samuel E J Preston
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Zahra Talat
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Hanne Lefrère
- Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Henry Yu
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Guihua Zhang
- Cancer Research Institute of Northern Alberta, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Basik
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Christophe Gonçalves
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Yao Zhan
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Dany Plourde
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jie Su
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jose Torres
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Maud Marques
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Sara Al Habyan
- Goodman Cancer Centre, McGill University, Montréal, Québec, Canada
| | - Krikor Bijian
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Frédéric Amant
- Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael Witcher
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Centre, Kansas City, Kansas
| | - Luke McCaffrey
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Goodman Cancer Centre, McGill University, Montréal, Québec, Canada
| | - Moulay Alaoui-Jamali
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Nadia V Giannakopoulos
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Muriel Brackstone
- Departments of Surgery and Oncology, Western University, London, Ontario, Canada
| | - Lynne-Marie Postovit
- Cancer Research Institute of Northern Alberta, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Rossy Cancer Network, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Brock EJ, Ji K, Shah S, Mattingly RR, Sloane BF. In Vitro Models for Studying Invasive Transitions of Ductal Carcinoma In Situ. J Mammary Gland Biol Neoplasia 2019; 24:1-15. [PMID: 30056557 PMCID: PMC6641861 DOI: 10.1007/s10911-018-9405-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
About one fourth of all newly identified cases of breast carcinoma are diagnoses of breast ductal carcinoma in situ (DCIS). Since we cannot yet distinguish DCIS cases that would remain indolent from those that may progress to life-threatening invasive ductal carcinoma (IDC), almost all women undergo aggressive treatment. In order to allow for more rational individualized treatment, we and others are developing in vitro models to identify and validate druggable pathways that mediate the transition of DCIS to IDC. These models range from conventional two-dimensional (2D) monolayer cultures on plastic to 3D cultures in natural or synthetic matrices. Some models consist solely of DCIS cells, either cell lines or primary cells. Others are co-cultures that include additional cell types present in the normal or cancerous human breast. The 3D co-culture models more accurately mimic structural and functional changes in breast architecture that accompany the transition of DCIS to IDC. Mechanistic studies of the dynamic and temporal changes associated with this transition are facilitated by adapting the in vitro models to engineered microfluidic platforms. Ultimately, the goal is to create in vitro models that can serve as a reproducible preclinical screen for testing therapeutic strategies that will reduce progression of DCIS to IDC. This review will discuss the in vitro models that are currently available, as well as the progress that has been made using them to understand DCIS pathobiology.
Collapse
MESH Headings
- Breast/pathology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Coculture Techniques/methods
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Neoplasm Invasiveness/pathology
- Neoplasm Invasiveness/prevention & control
- Primary Cell Culture/methods
Collapse
Affiliation(s)
- Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bonnie F Sloane
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University, 540 E. Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
10
|
Ohnishi Y, Yasui H, Nozaki M, Nakajima M. Molecularly-targeted therapy for the oral cancer stem cells. JAPANESE DENTAL SCIENCE REVIEW 2017; 54:88-103. [PMID: 29755619 PMCID: PMC5944082 DOI: 10.1016/j.jdsr.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/23/2017] [Accepted: 11/14/2017] [Indexed: 01/12/2023] Open
Abstract
Human cancer tissues are heterogeneous in nature and become differentiated during expansion of cancer stem cells (CSCs). CSCs initiate tumorigenesis, and are involved in tumor recurrence and metastasis. Furthermore, data show that CSCs are highly resistant to anticancer drugs. Cetuximab, a specific anti-epidermal growth factor receptor (EGFR) monoclonal antibody, is used in cancer treatment. Although development of resistance to cetuximab is well recognized, the underlying mechanisms remain unclear. Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR)/ErbB2, has antiproliferative effects and is used to treat patients with ErbB2-positive metastatic breast cancer. In this review, cetuximab and lapatinib-resistant oral squamous cell carcinoma (OSCC) cells proliferation and migration signal transduction passway is discussed by introducing our research.
Collapse
Affiliation(s)
- Yuichi Ohnishi
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan.,Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Yasui
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Nakajima
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
11
|
Torres-García D, Pérez-Torres A, Manoutcharian K, Orbe U, Servín-Blanco R, Fragoso G, Sciutto E. GK-1 peptide reduces tumor growth, decreases metastatic burden, and increases survival in a murine breast cancer model. Vaccine 2017; 35:5653-5661. [PMID: 28890195 DOI: 10.1016/j.vaccine.2017.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
GK-1 is a parasite-derived peptide adjuvant of 18 amino acid-length that enhances T-cell function and increases survival in B16-F10 melanoma tumor-bearing mice. This study was designed to evaluate in vivo the antitumor efficacy of GK-1 on 4T1 mouse mammary carcinoma. BALB/c mice with palpable primary tumors were weekly intravenously injected three times with saline solution or three different concentrations (10, 50, or 100μg per mouse) of GK-1. GK-1 significantly increased lifespan (p<0.0001) and reduced the primary tumor weight (p=0.014) and volume (p<0.0001) with respect to control mice, with no statistically significant differences among GK-1 doses. At the primary tumor, we found increased necrotic areas associated with a reduction in tumor mass, as well as an increase in the antitumor cytokine IL-12. Especially encouraging is the ability of GK-1 to reduce the number of lung metastasis (p=0.006) disregarding the dose used. The participation of IL-6 in metastasis development and the decreased levels of CCL-2, CCL-3, TNF-α, CXCL-9, GM-CSF, and b-FGF found in lungs of GK-1-treated mice is discussed. Our study supports the effectiveness of GK-1 as an antineoplastic agent that merits further exploration in combination with other therapeutic approaches in future translational studies.
Collapse
Affiliation(s)
- D Torres-García
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - A Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - K Manoutcharian
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - U Orbe
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - R Servín-Blanco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - G Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico
| | - E Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 Mexico City, Mexico.
| |
Collapse
|
12
|
HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance. Cancers (Basel) 2017; 9:cancers9050040. [PMID: 28445439 PMCID: PMC5447950 DOI: 10.3390/cancers9050040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs). HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2), which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT) of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab.
Collapse
|
13
|
Ezzatizadeh V. Cancer Stem Cell: From Conjecture to Reality. CANCER GENETICS AND PSYCHOTHERAPY 2017:757-787. [DOI: 10.1007/978-3-319-64550-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Castagnoli L, Ghedini GC, Koschorke A, Triulzi T, Dugo M, Gasparini P, Casalini P, Palladini A, Iezzi M, Lamolinara A, Lollini PL, Nanni P, Chiodoni C, Tagliabue E, Pupa SM. Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer. Oncogene 2016; 36:1721-1732. [PMID: 27641338 PMCID: PMC5447867 DOI: 10.1038/onc.2016.338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
Abstract
We have previously shown that the d16HER2 splice variant is linked to HER2-positive
breast cancer (BC) tumorigenesis, progression and response to Trastuzumab. However,
the mechanisms by which d16HER2 contributes to HER2-driven aggressiveness and
targeted therapy susceptibility remain uncertain. Here, we report that the
d16HER2-positive mammary tumor cell lines MI6 and MI7, derived from spontaneous
lesions of d16HER2 transgenic (tg) mice and resembling the aggressive features of
primary lesions, are enriched in the expression of Wnt, Notch and
epithelial–mesenchymal transition pathways related genes compared with
full-length wild-type (WT) HER2-positive cells (WTHER2_1 and WTHER2_2) derived from
spontaneous tumors arising in WTHER2 tg mice. MI6 cells exhibited increased
resistance to anoikis and significantly higher mammosphere-forming efficiency (MFE)
and self-renewal capability than the WTHER2-positive counterpart. Furthermore,
d16HER2-positive tumor cells expressed a higher fraction of
CD29High/CD24+/SCA1Low cells and
displayed greater in vivo tumor engraftment in serial dilution conditions
than WTHER2_1 cells. Accordingly, NOTCH inhibitors impaired mammosphere formation
only in MI6 cells. A comparative analysis of stemness-related features driven by
d16HER2 and WTHER2 in ad hoc engineered human BC cells (MCF7 and T47D)
revealed a higher MFE and aldehyde dehydrogenase-positive staining in d16HER2- vs
WTHER2-infected cells, sustaining consistent BC-initiating cell enrichment in the
human setting. Moreover, marked CD44 expression was found in MCF7_d16 and T47D_d16
cells vs their WTHER2 and Mock counterparts. Clinically, BC cases from two distinct
HER2-positive cohorts characterized by high levels of expression of the
activated-d16HER2 metagene were significantly enriched in the Notch family and signal
transducer genes vs those with low levels of the metagene.
Collapse
Affiliation(s)
- L Castagnoli
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G C Ghedini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Koschorke
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - T Triulzi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Dugo
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P Gasparini
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - P Casalini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Palladini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - M Iezzi
- CESI Aging Research Center, Department of Medicine and Aging Sciences, G D'Annunzio University, Via Colle dell'Ara, Chieti Scalo, Chieti, Italy
| | - A Lamolinara
- CESI Aging Research Center, Department of Medicine and Aging Sciences, G D'Annunzio University, Via Colle dell'Ara, Chieti Scalo, Chieti, Italy
| | - P L Lollini
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - P Nanni
- Laboratory of Immunology and Biology of Metastases, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - C Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - E Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S M Pupa
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
15
|
Ohnishi Y, Yasui H, Kakudo K, Nozaki M. Lapatinib-resistant cancer cells possessing epithelial cancer stem cell properties develop sensitivity during sphere formation by activation of the ErbB/AKT/cyclin D2 pathway. Oncol Rep 2016; 36:3058-3064. [PMID: 27633099 DOI: 10.3892/or.2016.5073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR)/ErbB2, has antiproliferative effects and is used to treat patients with ErbB2-positive metastatic breast cancer. In the present study, we examined the effects of lapatinib on growth of oral and prostate cancer cells. Oral squamous cell carcinoma (OSCC) cell lines HSC3, HSC4 and Ca9-22 were sensitive to the antiproliferative effects of lapatinib in anchorage-dependent culture, but the OSCC cell lines KB and SAS and the prostate cancer cell line DU145 were resistant to lapatinib. Phosphorylation levels of EGFR in all cell lines decreased during lapatinib treatment in anchorage‑dependent culture. Furthermore, the phosphorylation levels of ErbB2, ErbB3 and Akt and the protein levels of cyclin D1 were decreased by lapatinib treatment of HSC3, HSC4 and Ca9-22 cells. ErbB3 was not expressed and cyclin D1 protein levels were not altered by lapatinib treatment in KB, DU145 and SAS cells. The phosphorylation of ErbB2 and AKT was not affected by lapatinib in SAS cells and was not detected in KB and DU145 cells. Lapatinib-resistant cell lines exhibited sphere-forming ability, and SAS cells developed sensitivity to lapatinib during sphere formation. The phosphorylation levels of ErbB2 and AKT and protein levels of cyclin D2 increased during sphere formation of SAS cells and decreased with lapatinib treatment. In addition, sphere formation of SAS cells was inhibited by the AKT inhibitor MK2206. AKT phosphorylation and cyclin D2 levels in SAS spheres were decreased by MK2206 treatment. SAS cells expressed E-cadherin, but not vimentin and KB cells expressed vimentin, but not E-cadherin. DU145 cells expressed vimentin and E-cadherin. These results suggested that phosphorylation of EGFR and ErbB2 by cell detachment from the substratum induces the AKT pathway/cyclin D2-dependent sphere growth in SAS epithelial cancer stem-like cells, thereby rendering SAS spheres sensitive to lapatinib treatment.
Collapse
Affiliation(s)
- Yuichi Ohnishi
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Yasui
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenji Kakudo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Booth ME, Nash CE, Roberts NP, Magee DR, Treanor D, Hanby AM, Speirs V. 3-D Tissue Modelling and Virtual Pathology as New Approaches to Study Ductal Carcinoma In Situ. Altern Lab Anim 2015; 43:377-83. [DOI: 10.1177/026119291504300605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Widespread screening mammography programmes mean that ductal carcinoma in situ (DCIS), a pre-invasive breast lesion, is now more frequently diagnosed. However, not all diagnosed DCIS lesions progress to invasive breast cancer, which presents a dilemma for clinicians. As such, there is much interest in studying DCIS in the laboratory, in order to help understand more about its biology and determine the characteristics of those that progress to invasion. Greater knowledge would lead to targeted and better DCIS treatment. Here, we outline some of the models available to study DCIS, with a particular focus on animal-free systems.
Collapse
Affiliation(s)
- Mary E. Booth
- Leeds Institute of Cancer and Pathology, Leeds, UK
- Joint first authors
| | - Claire E. Nash
- Leeds Institute of Cancer and Pathology, Leeds, UK
- Joint first authors
- Current address: The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | | | | | - Darren Treanor
- Leeds Institute of Cancer and Pathology, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | |
Collapse
|
17
|
de Souza VB, Schenka AA. Cancer Stem and Progenitor-Like Cells as Pharmacological Targets in Breast Cancer Treatment. Breast Cancer (Auckl) 2015; 9:45-55. [PMID: 26609237 PMCID: PMC4644141 DOI: 10.4137/bcbcr.s29427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/05/2023] Open
Abstract
The present review is focused on the current role of neoplastic stem and progenitor-like cells as primary targets in the pharmacotherapy of cancer as well as in the development of new anticancer drugs. We begin by summarizing the main characteristics of these tumor-initiating cells and key concepts that support their participation in therapeutic failure. In particular, we discuss the differences between the major carcinogenesis models (ie, clonal evolution vs cancer stem cell (CSC) model) with emphasis on breast cancer (given its importance to the study of CSCs) and their implications for the development of new treatment strategies. In addition, we describe the main ways to target these cells, including the main signaling pathways that are more activated or altered in CSCs. Finally, we provide a comprehensive compilation of the most recently tested drugs.
Collapse
Affiliation(s)
- Valéria B. de Souza
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Anatomic Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - André A. Schenka
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Anatomic Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
18
|
Williams KE, Bundred NJ, Landberg G, Clarke RB, Farnie G. Focal adhesion kinase and Wnt signaling regulate human ductal carcinoma in situ stem cell activity and response to radiotherapy. Stem Cells 2015; 33:327-41. [PMID: 25187396 DOI: 10.1002/stem.1843] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/15/2014] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) can avoid or efficiently repair DNA damage from radio and chemotherapy, which suggests they play a role in disease recurrence. Twenty percentage of patients treated with surgery and radiotherapy for ductal carcinoma in situ (DCIS) of the breast recur and our previous data show that high grade DCIS have increased numbers of CSCs. Here, we investigate the role of focal adhesion kinase (FAK) and Wnt pathways in DCIS stem cells and their capacity to survive irradiation. Using DCIS cell lines and patient samples, we demonstrate that CSC-enriched populations are relatively radioresistant and possess high FAK activity. Immunohistochemical studies of active FAK in DCIS tissue show high expression was associated with a shorter median time to recurrence. Treatment with a FAK inhibitor or FAK siRNA in nonadherent and three-dimensional matrigel culture reduced mammosphere formation, and potentiated the effect of 2 Gy irradiation. Moreover, inhibition of FAK in vitro and in vivo decreased self-renewal capacity, levels of Wnt3a and B-Catenin revealing a novel FAK-Wnt axis regulating DCIS stem cell activity. Overall, these data establish that the FAK-Wnt axis is a promising target to eradicate self-renewal capacity and progression of human breast cancers.
Collapse
Affiliation(s)
- Kathryn E Williams
- Surgical Oncology, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Education and Research Centre, Manchester, United Kingdom; Cancer Stem Cell Research, University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Bartlett R, Everett W, Lim S, G N, Loizidou M, Jell G, Tan A, Seifalian AM. Personalized in vitro cancer modeling - fantasy or reality? Transl Oncol 2014; 7:657-64. [PMID: 25500073 PMCID: PMC4311045 DOI: 10.1016/j.tranon.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023] Open
Abstract
With greater technological advancements and understanding of pathophysiology, “personalized medicine” has become a more realistic goal. In the field of cancer, personalized medicine is the ultimate objective, as each cancer is unique and each tumor is heterogeneous. For many decades, researchers have relied upon studying the histopathology of tumors in the hope that it would provide clues to understanding the pathophysiology of cancer. Current preclinical research relies heavily upon two-dimensional culture models. However, these models have had limited success in recreating the complex interactions between cancer cells and the stroma environment in vivo. Thus, there is increasing impetus to shift to three-dimensional models, which more accurately reflect this phenomenon. With a more accurate in vitro tumor model, drug sensitivity can be tested to determine the best treatment option based on the tumor characteristics. Many methods have been developed to create tumor models or “tumoroids,” each with its advantages and limitations. One significant problem faced is the replication of angiogenesis that is characteristic of tumors in vivo. Nonetheless, if three-dimensional models could be standardized and implemented as a preclinical research tool for therapeutic testing, we would be taking a step towards making personalized cancer medicine a reality.
Collapse
Affiliation(s)
- Richard Bartlett
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London, UK; UCL Medical School, University College London (UCL), London, UK
| | - William Everett
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London, UK; UCL Medical School, University College London (UCL), London, UK
| | - Santi Lim
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London, UK; UCL Medical School, University College London (UCL), London, UK
| | - Natasha G
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London, UK; UCL Medical School, University College London (UCL), London, UK
| | - Marilena Loizidou
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Gavin Jell
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London, UK
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London, UK; UCL Medical School, University College London (UCL), London, UK; Biomaterials & Advanced Drug Delivery Laboratory (BioADD), Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Alexander M Seifalian
- Centre for Nanotechnology & Regenerative Medicine, Research Department of Nanotechnology, UCL Division of Surgery & Interventional Science, University College London (UCL), London, UK; Royal Free London NHS Foundation Trust Hospital, London, UK.
| |
Collapse
|