1
|
Gąsior-Perczak D, Kowalik A, Kopczyński J, Macek P, Niemyska K, Walczyk A, Gruszczyński K, Siołek M, Dróżdż T, Kosowski M, Pałyga I, Przybycień P, Wabik O, Góźdź S, Kowalska A. Relationship between the Expression of CHK2 and p53 in Tumor Tissue and the Course of Papillary Thyroid Cancer in Patients with CHEK2 Germline Mutations. Cancers (Basel) 2024; 16:815. [PMID: 38398207 PMCID: PMC10886656 DOI: 10.3390/cancers16040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to determine whether the expression of CHK2 and p53 in tumor tissue in carriers of germline CHEK2 mutations can serve as a prognostic marker for PTC, and whether CHEK2 and TP53 copy numbers correlates with the course of PTC disease. This study included 156 PTC patients previously tested for the presence of CHEK2. Clinicopathological features, treatment response, disease outcome, and germline mutation status of the CHEK2 gene were assessed with respect to CHK2 and p53 expression, and CHEK2 and TP53 gene copy statuses. In patients with and without a germline mutation in CHEK2 and with higher CHK2 expression, the chances of an excellent treatment response and no evidence of disease were lower than in patients without or with lower CHK2 expression. TP53 deletion was associated with angioinvasion. In patients with a truncating mutation, the chance of a CHEK2 deletion was higher than in patients with WT CHEK2 alone or those with WT CHEK2 and with the missense I157T mutation. Higher CHK2 expression was associated with poorer treatment responses and disease outcomes. Higher CHK2 expression and positive p53 together with a TP53 deletion could be a prognostic marker of unfavorable disease outcomes in patients with germline truncating mutations in CHEK2.
Collapse
Affiliation(s)
- Danuta Gąsior-Perczak
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (A.K.); (K.G.)
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Janusz Kopczyński
- Surgical Pathology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (J.K.); (K.N.)
| | - Paweł Macek
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Department of Epidemiology and Cancer Control, Holycross Cancer Center S. Artwińskiego St. 3, 25-734 Kielce, Poland
| | - Kornelia Niemyska
- Surgical Pathology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (J.K.); (K.N.)
| | - Agnieszka Walczyk
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| | - Krzysztof Gruszczyński
- Department of Molecular Diagnostics, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (A.K.); (K.G.)
| | - Monika Siołek
- Genetic Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland;
| | - Tomasz Dróżdż
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Department of Radiology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland
| | - Marcin Kosowski
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
| | - Iwona Pałyga
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| | - Piotr Przybycień
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| | - Olga Wabik
- Surgical Pathology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland; (J.K.); (K.N.)
| | - Stanisław Góźdź
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Clinical Oncology, Holycross Cancer Centre, S. Artwińskiego Str. 3, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland; (P.M.); (A.W.); (T.D.); (M.K.); (I.P.); (S.G.); (A.K.)
- Endocrinology Clinic, Holycross Cancer Centre, S. Artwińskiego St. 3, 25-734 Kielce, Poland;
| |
Collapse
|
2
|
Xia Y, Li Y, Gong P, Jiang H, Zhang X. Clinicopathological analysis and genomic profiling of a rare histiocyte-rich rhabdomyoblastic tumor: A case report. Medicine (Baltimore) 2021; 100:e26105. [PMID: 34128847 PMCID: PMC8213239 DOI: 10.1097/md.0000000000026105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Skeletal muscle tumors are traditionally classified as rhabdomyomas or rhabdomyosarcomas. However, some soft tissue tumors cannot easily be identified as benign or malignant. We report a case of a histiocyte-rich rhabdomyoblastic tumor, with pathologic characteristics distinct from either rhabdomyoma or rhabdomyosarcoma. In contrast to rhabdomyosarcomas, the tumor cells exhibited low mitotic activity, lacking obvious morphologic atypia. Clinically, the tumor followed a very indolent course. Overall, the tumor did not fit classification criteria for either benign or malignant. PATIENT CONCERNS A 58-year-old Chinese man was admitted to Qilu Hospital on September 8, 2018, with a >20 year history of a mass in the middle of the left thigh. A few months prior to admission, he had experienced the pain from the mass extending to the distal left lower extremity. He had no prior history of significant disease or relevant family history. DIAGNOSES Microscopically, numerous histiocytes and foamy cells covered the actual tumor cells that were positive for desmin, MyoD1, and myogenin, suggesting striated skeletal muscle cell differentiation. However, cross-striations were not detected in the tumor cells. The tumor was characterized by a non-infiltrative growth pattern and a low level of Ki67. A diagnosis of histiocyte-rich rhabdomyoblastic tumor was suggested. INTERVENTIONS The thigh mass was surgically resected September 12, 2018. OUTCOMES The patient recovered well postoperatively, and was free of tumor recurrence or metastasis, followed to September 12, 2020 (23 months). LESSONS Histiocyte-rich rhabdomyoblastic tumor cells have minor atypia, indicating possible malignant potential. However, the tumor behavior was quit indolent. Due to the conflicting clinical and pathologic aspects of the tumor, to label it as rhabdomyosarcoma seemed inaccurate, potentially prompting over treatment. Interestingly, mutations were detected in NF1, AXIN2, CHEK2, DNMT3A, KMT2D, and RB1 through next-generation sequencing. These mutations suggest disruptions in Ras signaling, the Wnt pathway, methyltransferases, and the cell cyclepotentially influencing the development of this histiocyte-rich rhabdomyoblastic tumor. This unusual tumor should be incorporated into the WHO Classification of Soft Tissue Tumors owing to its unique characteristics.
Collapse
Affiliation(s)
| | - Ye Li
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong
| | - Peng Gong
- Department of General Surgery, Shenzhen University General Hospital & Carson International Cancer Research Centre, Shenzhen, P.R. China
| | | | - Xianbin Zhang
- Department of General Surgery, Shenzhen University General Hospital & Carson International Cancer Research Centre, Shenzhen, P.R. China
| |
Collapse
|
3
|
Frankenstein Z, Uraoka N, Aypar U, Aryeequaye R, Rao M, Hameed M, Zhang Y, Yagi Y. Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner. Appl Microsc 2021; 51:4. [PMID: 33835321 PMCID: PMC8035347 DOI: 10.1186/s42649-021-00053-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.
Collapse
Affiliation(s)
- Ziv Frankenstein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Naohiro Uraoka
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Umut Aypar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ruth Aryeequaye
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mamta Rao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yukako Yagi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
4
|
Yuan R, Ding X, Tan X, Hou Y. Loss of FZO1 gene results in changes of cell dynamics in fission yeast. Int J Mol Med 2020; 46:2194-2206. [PMID: 33125111 PMCID: PMC7595653 DOI: 10.3892/ijmm.2020.4752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fission and fusion dynamics are critical cellular processes, and abnormalities in these processes are associated with severe human disorders, such as Beckwith-Wiedemann syndrome, neurodegenerative diseases, Charcot-Marie-Tooth disease type 6, multiple symmetric lipomatosis and microcephaly. Fuzzy onions protein 1 (Fzo1p) regulates mitochondrial outer membrane fusion. In the present study, Schizosaccharomyces pombe (S. pombe) was used to explore the effect of FZO1 gene deletion on cell dynamics in mitosis. The mitochondrial morphology results showed that the mitochondria appeared to be fragmented and tubular in wild-type cells; however, they were observed to accumulate in fzo1Δ cells. The FZO1 gene deletion was demonstrated to result in slow proliferation, sporogenesis defects, increased microtubule (MT) number and actin contraction defects in S. pombe. The FZO1 gene deletion also affected the rate of spindle elongation and phase time at the metaphase and anaphase, as well as spindle MT organization. Live-cell imaging was performed on mutant strains to observe three distinct kinetochore behaviors (normal, lagging and mis-segregation), as well as abnormal spindle breakage. The FZO1 gene deletion resulted in coenzyme and intermediate metabolite abnormalities as determined via metabolomics analysis. It was concluded that the loss of FZO1 gene resulted in deficiencies in mitochondrial dynamics, which may result in deficiencies in spindle maintenance, chromosome segregation, spindle breakage, actin contraction, and coenzyme and intermediate metabolite levels.
Collapse
Affiliation(s)
- Rongmei Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiumei Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
5
|
Karakülah G, Arslan N, Yandım C, Suner A. TEffectR: an R package for studying the potential effects of transposable elements on gene expression with linear regression model. PeerJ 2019; 7:e8192. [PMID: 31824778 PMCID: PMC6899341 DOI: 10.7717/peerj.8192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/11/2019] [Indexed: 01/24/2023] Open
Abstract
Introduction Recent studies highlight the crucial regulatory roles of transposable elements (TEs) on proximal gene expression in distinct biological contexts such as disease and development. However, computational tools extracting potential TE -proximal gene expression associations from RNA-sequencing data are still missing. Implementation Herein, we developed a novel R package, using a linear regression model, for studying the potential influence of TE species on proximal gene expression from a given RNA-sequencing data set. Our R package, namely TEffectR, makes use of publicly available RepeatMasker TE and Ensembl gene annotations as well as several functions of other R-packages. It calculates total read counts of TEs from sorted and indexed genome aligned BAM files provided by the user, and determines statistically significant relations between TE expression and the transcription of nearby genes under diverse biological conditions. Availability TEffectR is freely available at https://github.com/karakulahg/TEffectR along with a handy tutorial as exemplified by the analysis of RNA-sequencing data including normal and tumour tissue specimens obtained from breast cancer patients.
Collapse
Affiliation(s)
- Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | | | - Cihangir Yandım
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
6
|
Naab TJ, Gautam A, Ricks-Santi L, Esnakula AK, Kanaan YM, DeWitty RL, Asgedom G, Makambi KH, Abawi M, Blancato JK. MYC amplification in subtypes of breast cancers in African American women. BMC Cancer 2018. [PMID: 29523126 PMCID: PMC5845301 DOI: 10.1186/s12885-018-4171-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background MYC overexpression is associated with poor prognosis in breast tumors (BCa). The objective of this study was to determine the prevalence of MYC amplification and associated markers in BCa tumors from African American (AA) women and determine the associations between MYC amplification and clinico-pathological characteristics. Methods We analyzed 70 cases of well characterized archival breast ductal carcinoma specimens from AA women for MYC oncogene amplification. Utilizing immune histochemical analysis estrogen receptor (ER), progesterone receptor (PR), and (HER2/neu), were assessed. Cases were Luminal A (ER or PR+, Ki-67 < 14%), Luminal B (ER or PR+, Ki-67 = > 14% or ER or PR+ HER2+), HER2 (ER-, PR-, HER2+), and Triple Negative (ER-, PR-, HER2-) with basal-like phenotype. The relationship between MYC amplification and prognostic clinico-pathological characteristics was determined using chi square and logistic regression modeling. Results Sixty-five (97%) of the tumors showed MYC gene amplification (MYC: CEP8 > 1). Statistically significant associations were found between MYC amplification and HER2-amplified BCa, and Luminal B subtypes of BCa (p < 0.0001), stage (p < 0.001), metastasis (p < 0.001), and positive lymph node status (p = 0.039). MYC amplification was associated with HER2 status (p = 0.01) and tumor size (p = 0.01). High MYC amplification was seen in grade III carcinomas (MYC: CEP8 = 2.42), pre-menopausal women (MYC: CEP8 = 2.49), PR-negative status (MYC: CEP8 = 2.42), and ER-positive status (MYC: CEP8 = 2.4). Conclusions HER2 positive BCas in AA women are likely to exhibit MYC amplification. High amplification ratios suggest that MYC drives HER2 amplification, especially in HER2 positive, Luminal B, and subtypes of BCa.
Collapse
Affiliation(s)
- Tammey J Naab
- Department of Pathology, Howard University College of Medicine, Howard University Hospital, 2041 Georgia Avenue Rm. 1M-06, Washington DC, NW, 20060, USA
| | - Anita Gautam
- Department of Oncology, University of Massachusetts Medical School, 373 Plantation street Suite# 318, Worcester, MA, 01581, England
| | - Luisel Ricks-Santi
- Cancer Research Center, Department of Biological Sciences, Hampton University, 100 E. Queen Street, Hampton, VA, 23668, USA
| | - Ashwini K Esnakula
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, P.O. Box 100275, 1600 SW Archer Road, Gainesville, FL, 32610-0275, USA
| | - Yasmine M Kanaan
- Department of Microbiology, Howard University College of Medicine, 2041 Georgia Avenue Rm. 1M-06, Washington DC, NW, 20060, USA
| | - Robert L DeWitty
- Department of Surgery, Howard University Hospital, 2041 Georgia Avenue, Washington DC, NW, 20060, USA
| | - Girmay Asgedom
- Department of Medicine, Howard University Hospital, 2041 Georgia Avenue, Washington DC, NW, 20060, USA
| | - Khepher H Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center, Georgetown University, 4000 Reservoir Road, Washington, DC, NW, 20057, USA
| | - Massih Abawi
- Inherited Cancer Program, GeneDx, 207 Perry Pkwy, Gaithersburg, MD, 20877, USA
| | - Jan K Blancato
- Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University Medical Centre, 3800 Reservoir Road, Washington DC, NW, 20007, USA.
| |
Collapse
|
7
|
Yang F, Wang Y, Li Q, Cao L, Sun Z, Jin J, Fang H, Zhu A, Li Y, Zhang W, Wang Y, Xie H, Gustafsson JÅ, Wang S, Guan X. Intratumor heterogeneity predicts metastasis of triple-negative breast cancer. Carcinogenesis 2017; 38:900-909. [PMID: 28911002 DOI: 10.1093/carcin/bgx071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Even with the identical clinicopathological features, the ability for metastasis is vastly different among triple-negative breast cancer (TNBC) patients. Intratumor heterogeneity (ITH), which is common in breast cancer, may be a key mechanism leading to the tumor progression. In this study, we studied whether a quantitative genetic definition of ITH can predict clinical outcomes in patients with TNBC. We quantified ITH by calculating Shannon index, a measure of diversity in a population, based on Myc, epidermal growth factor receptor/centromeric probe 7 (EGFR/CEP7) and cyclin D1/centromeric probe 11 (CCND1/CEP11) copy number variations (CNVs) in 300 cells at three different locations of a tumor. Among 75 TNBC patients, those who developed metastasis had significantly higher ITH, that is Shannon indices of EGFR/CEP7 and CCND1/CEP11 CNVs. Higher Shannon indices of EGFR/CEP7 and CCND1/CEP11 CNVs were significantly associated with the development of metastasis and were predictive of significantly worse metastasis-free survival (MFS). Regional heterogeneity, defined as the difference in copy numbers of Myc, EGFR or CCND1 at different locations, was found in 52 patients. However, the presence of regional heterogeneity did not correlate with metastasis or MFS. Our findings demonstrate that higher ITH of EGFR/CEP7 and CCND1/CEP11 CNVs is predictive of metastasis and is associated with significantly worse MFS in TNBC patients, suggesting that ITH is a very promising novel prognostic factor in TNBC.
Collapse
Affiliation(s)
- Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Yucai Wang
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Quan Li
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, China
| | - Lulu Cao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Zijia Sun
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Juan Jin
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Hehui Fang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Aiyu Zhu
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, China
| | - Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | - Yanru Wang
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| |
Collapse
|
8
|
Song JL, Chen C, Yuan JP, Sun SR. Progress in the clinical detection of heterogeneity in breast cancer. Cancer Med 2016; 5:3475-3488. [PMID: 27774765 PMCID: PMC5224851 DOI: 10.1002/cam4.943] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is currently the most common form of cancer and the second‐leading cause of death from cancer in women. Though considerable progress has been made in the treatment of breast cancer, the heterogeneity of tumors (both inter‐ and intratumor) remains a considerable diagnostic and prognostic challenge. From clinical observation to genetic mutations, the history of understanding the heterogeneity of breast cancer is lengthy and detailed. Effectively detecting heterogeneity in breast cancer is important during treatment. Various methods of depicting this heterogeneity are now available and include genetic, pathologic, and imaging analysis. These methods allow characterization of the heterogeneity of breast cancer on a genetic level, providing greater insight during the process of establishing an effective therapeutic plan. This study reviews how the understanding of tumor heterogeneity in breast cancer evolved, and further summarizes recent advances in the detection and monitoring of this heterogeneity in patients with breast cancer.
Collapse
Affiliation(s)
- Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
9
|
Niyaz M, Abdurahman A, Turghun A, Awut I. CEP3 and CEP17 DNA probe potential in the genetic diagnosis and prognostic prediction of esophageal squamous cell cancer. Exp Ther Med 2016; 11:1375-1380. [PMID: 27073452 DOI: 10.3892/etm.2016.3080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/25/2015] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the clinical application of molecular pathological diagnosis for the prognosis of Kazakh patients with esophageal squamous cell carcinoma (ESCC) using centromere enumeration probes (CEPs) for chromosomes 3 and 17. A total of 40 patients with ESCC that had received radical surgical treatment and 10 healthy control participants were enrolled in the present study. Touch preparations of fresh cancerous and normal tissues were completed and fluorescence in situ hybridization (FISH) was performed to count the copy numbers of CEP 3 and 17, and abnormalities were analyzed, in comparison with routine pathological diagnoses. FISH analysis demonstrated that abnormal copy numbers of CEP 3 and 17 (aneuploidy) were detected in all 40 patients with ESCC. CEP 3 and 17 polyploidy rates differed significantly between poorly differentiated, moderately differentiated and well-differentiated ESCC groups (P<0.05): Well-differentiated, 35.38 and 30.92%; moderately differentiated, 55.81 and 44.43%; and poorly differentiated, 76.26 and 71.90%, respectively. Furthermore, polyploidy rates were significantly increased in the group with lymph node metastasis, as compared with the group without (CEP 3, P=0.0001; CEP 17, P=0.012). Variations in the copy numbers of CEP 3 and 17 were demonstrated to be correlated with the level of differentiation and lymph node metastasis in patients with ESCC. Therefore, the present results indicate that DNA probes may be used to predict prognostic factors in patients with ESCC. Furthermore, FISH technology is an objective and qualitative method that is capable of detecting variations in CEP 3 and 17; therefore, FISH may be used in the genetic diagnosis of ESCC in Kazakh patients.
Collapse
Affiliation(s)
- Madiniyat Niyaz
- Xinjiang Esophageal Cancer Research Institute, Medical Research Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ablajan Abdurahman
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abdugheni Turghun
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Idiris Awut
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
10
|
Warford A. In situ hybridisation: Technologies and their application to understanding disease. ACTA ACUST UNITED AC 2015; 50:37-48. [PMID: 26797255 DOI: 10.1016/j.proghi.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022]
Abstract
In situ hybridisation (ISH) is unique amongst molecular analysis methods in providing for the precise microscopic localisation of genes, mRNA and microRNA in metaphase spreads, cell and tissue preparations. The method is well established as a tool to guide appropriate therapeutic intervention in breast, gastric and lung cancer. With the description of ultrasensitive ISH technologies for low copy mRNA demonstration and the relative ease by which microRNA can be visualised, the applications for research and diagnostic purposes is set to increase dramatically. In this review ISH is considered with emphasis on recent technological developments and surveyed for present and future applications in the context of the demonstration of genes, mRNA and microRNA in health and disease.
Collapse
Affiliation(s)
- Anthony Warford
- University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom.
| |
Collapse
|
11
|
Li J, Su W, Zhang S, Hu Y, Liu J, Zhang X, Bai J, Yuan W, Hu L, Cheng T, Zetterberg A, Lei Z, Zhang J. Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer. Cancer Sci 2015; 106:642-9. [PMID: 25702787 PMCID: PMC4452167 DOI: 10.1111/cas.12637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/04/2023] Open
Abstract
The epidermal growth factor receptor (EGFR)/PI3K/AKT signaling pathway aberrations play significant roles in breast cancer occurrence and development. However, the status of EGFR and AKT1 gene copy numbers remains unclear. In this study, we showed that the rates of EGFR and AKT1 gene copy number alterations were associated with the prognosis of breast cancer. Among 205 patients, high EGFR and AKT1 gene copy numbers were observed in 34.6% and 27.8% of cases by multi-gene fluorescence in situ hybridization, respectively. Co-heightened EGFR/AKT1 gene copy numbers were identified in 11.7% cases. No changes were found in 49.3% of patients. Although changes in EGFR and AKT1 gene copy numbers had no correlation with patients' age, tumor stage, histological grade and the expression status of other molecular makers, high EGFR (P = 0.0002) but not AKT1 (P = 0.1177) gene copy numbers correlated with poor 5-year overall survival. The patients with co-heightened EGFR/AKT1 gene copy numbers displayed a poorer prognosis than those with tumors with only high EGFR gene copy numbers (P = 0.0383). Both Univariate (U) and COX multivariate (C) analyses revealed that high EGFR and AKT1 gene copy numbers (P = 0.000 [U], P = 0.0001 [C]), similar to histological grade (P = 0.001 [U], P = 0.012 [C]) and lymph node metastasis (P = 0.046 [U], P = 0.158 [C]), were independent prognostic indicators of 5-year overall survival. These results indicate that high EGFR and AKT1 gene copy numbers were relatively frequent in breast cancer. Co-heightened EGFR/AKT1 gene copy numbers had a worse outcome than those with only high EGFR gene copy numbers, suggesting that evaluation of these two genes together may be useful for selecting patients for anti-EGFR-targeted therapy or anti-EGFR/AKT1-targeted therapy and for predicting outcomes.
Collapse
Affiliation(s)
- Jiao Li
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Su
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Sheng Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yunhui Hu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingjing Liu
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaobei Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingchao Bai
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Weiping Yuan
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Linping Hu
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tao Cheng
- Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Anders Zetterberg
- Clinical Pathology Department of Karolinska Hospital, Karolinska Institute, Solna, Sweden
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jin Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|