1
|
Wang F, Xu W, Liu X, Zhang J. Dexmedetomidine ameliorates high glucose-induced epithelial-mesenchymal transformation in HK-2 cells through the Cdk5/Drp1/ROS pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:71-81. [PMID: 38013469 PMCID: PMC10875345 DOI: 10.3724/abbs.2023220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/15/2023] [Indexed: 11/29/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays an important role in the progression of diabetic nephropathy. Dexmedetomidine (DEX) has shown renoprotective effects against ischemic reperfusion injury; however, whether and how DEX prevents high glucose-induced EMT in renal tubular epithelial cells is incompletely known. Here, we conduct in vitro experiments using HK-2 cells, a human tubular epithelial cell line. Our results demonstrate that high glucose increases the expressions of EMT-related proteins, including Vimentin, Slug, Snail and Twist, while decreasing the expression of E-cadherin and increasing Cdk5 expression in HK-2 cells. Both Cdk5 knockdown and inhibition by roscovitine increase the expressions of E-cadherin while decreasing the expressions of other EMT-related markers. DEX inhibits Cdk5 expression without affecting cell viability and changes the expressions of EMT-related markers, similar to effects of Cdk5 inhibition. Furthermore, Cdk5 is found to interact with Drp1 at the protein level and mediate the phosphorylation of Drp1. In addition, Drp1 inhibition with mdivi-1 could also restrain the high glucose-induced EMT process in HK-2 cells. Immunofluorescence results show that roscovitine, Mdivi-1 and DEX inhibit high glucose-induced intracellular ROS accumulation, while the oxidant H 2O 2 eliminates the protective effect of DEX on the EMT process. These results indicate that DEX mitigates high glucose-induced EMT progression in HK-2 cells via inhibition of the Cdk5/Drp1/ROS pathway.
Collapse
Affiliation(s)
- Fei Wang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weilong Xu
- Department of Anesthesiologythe Affiliated Hospital of Qingdao UniversityQingdao266000China
| | - Xiaoge Liu
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Jun Zhang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
2
|
Liang XL, Ouyang L, Yu NN, Sun ZH, Gui ZK, Niu YL, He QY, Zhang J, Wang Y. Histone deacetylase inhibitor pracinostat suppresses colorectal cancer by inducing CDK5-Drp1 signaling-mediated peripheral mitofission. J Pharm Anal 2023; 13:1168-1182. [PMID: 38024857 PMCID: PMC10657975 DOI: 10.1016/j.jpha.2023.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Divisions at the periphery and midzone of mitochondria are two fission signatures that determine the fate of mitochondria and cells. Pharmacological induction of excessively asymmetric mitofission-associated cell death (MFAD) by switching the scission position from the mitochondrial midzone to the periphery represents a promising strategy for anticancer therapy. By screening a series of pan-inhibitors, we identified pracinostat, a pan-histone deacetylase (HDAC) inhibitor, as a novel MFAD inducer, that exhibited a significant anticancer effect on colorectal cancer (CRC) in vivo and in vitro. Pracinostat increased the expression of cyclin-dependent kinase 5 (CDK5) and induced its acetylation at residue lysine 33, accelerating the formation of complex CDK5/CDK5 regulatory subunit 1 and dynamin-related protein 1 (Drp1)-mediated mitochondrial peripheral fission. CRC cells with high level of CDK5 (CDK5-high) displayed midzone mitochondrial division that was associated with oncogenic phenotype, but treatment with pracinostat led to a lethal increase in the already-elevated level of CDK5 in the CRC cells. Mechanistically, pracinostat switched the scission position from the mitochondrial midzone to the periphery by improving the binding of Drp1 from mitochondrial fission factor (MFF) to mitochondrial fission 1 protein (FIS1). Thus, our results revealed the anticancer mechanism of HDACi pracinostat in CRC via activating CDK5-Drp1 signaling to cause selective MFAD of those CDK5-high tumor cells, which implicates a new paradigm to develop potential therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Xiao-Ling Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lan Ouyang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nan-Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zheng-Hua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Kang Gui
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Long Niu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Radiology, The First Affiliated Hospital of Jinan University and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Jing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Cao SL, Luo HY, Gao YC, Lan XM, Liu SY, Li B, Bao L, E. J, Ma D, Zhang GQ, Yang LR, Bao X, Zheng YL. TFP5-Mediated CDK5 Activity Inhibition Improves Diabetic Nephropathy via NGF/Sirt1 Regulating Axis. Front Cell Dev Biol 2022; 10:829067. [PMID: 35874807 PMCID: PMC9301001 DOI: 10.3389/fcell.2022.829067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/27/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the leading causes of chronic kidney disease (CKD), during which hyperglycemia is composed of the major force for the deterioration to end-stage renal disease (ESRD). However, the underlying mechanism triggering the effect of hyperglycemia on DN is not very clear and the clinically available drug for hyperglycemia-induced DN is in need of urgent development. Here, we found that high glucose (HG) increased the activity of cyclin-dependent kinase 5 (CDK5) dependent on P35/25 and which upregulated the oxidative stress and apoptosis of mouse podocytes (MPC-5). TFP5, a 25-amino acid peptide inhibiting CDK5 activity, decreased the secretion of inflammation cytokines in serum and kidney, and effectively protected the kidney function in db/db mouse from hyperglycemia-induced kidney injuries. In addition, TFP5 treatment decreased HG-induced oxidative stress and cell apoptosis in MPC-5 cells and kidney tissue of db/db mouse. The principal component analysis (PCA) of RNA-seq data showed that MPC-5 cell cultured under HG, was well discriminated from that under low glucose (LG) conditions, indicating the profound influence of HG on the properties of podocytes. Furthermore, we found that HG significantly decreased the level of NGF and Sirt1, both of which correlated with CDK5 activity. Furthermore, knockdown of NGF was correlated with the decreased expression of Sirt1 while NGF overexpression leads to upregulated Sirt1 and decreased oxidative stress and apoptosis in MPC-5 cells, indicating the positive regulation between NGF and Sirt1 in podocytes. Finally, we found that K252a, an inhibitor of NGF treatment could undermine the protective role of TFP5 on hyperglycemia-induced DN in db/db mouse model. In conclusion, the CDK5-NGF/Sirt1 regulating axis may be the novel pathway to prevent DN progression and TFP5 may be a promising compound to improved hyperglycemia induced DN.
Collapse
Affiliation(s)
- Shi-Lu Cao
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Hong-Yan Luo
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yong-Cai Gao
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
| | - Xiao-Mei Lan
- Department of Geriatrics, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shun-Yao Liu
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Li Bao
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Jing E.
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Danna Ma
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guo-Qing Zhang
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
| | - Li-Rong Yang
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
| | - Xi Bao
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ya-Li Zheng
- Department of Nephrology, Ningxia Medical University Affiliated People’s Hospital of Autonomous Region of Yinchuan, Yinchuan, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
- *Correspondence: Ya-Li Zheng,
| |
Collapse
|
4
|
Michałek K, Grabowska M, Lepczyński A. Cellular localization and putative role of aquaporin-2 Ser-261 in the bovine kidney. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/103815/2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Zynda ER, Maloy MH, Kandel ES. The role of PAK1 in the sensitivity of kidney epithelial cells to ischemia-like conditions. Cell Cycle 2019; 18:596-604. [PMID: 30724698 DOI: 10.1080/15384101.2019.1578149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Kidney ischemia, characterized by insufficient supply of oxygen and nutrients to renal epithelial cells, is the main cause of acute kidney injury and an important contributor to mortality world-wide. Earlier research implicated a G-protein coupled receptor (NK1R) in the death of kidney epithelial cells in ischemia-like conditions. P21-associated kinase 1 (PAK1) is involved in signalling by several G-proteins. We explored the consequences of PAK1 inhibition for cell survival under the conditions of reduced glucose and oxygen. Inhibition of PAK1 by RNA interference, expression of a dominant-negative mutant or treatment with small molecule inhibitors greatly reduced the death of cultured kidney epithelial cells. Similar protection was achieved by treating the cells with inhibitors of MEK1, in agreement with the prior reports on PAK1-MEK1 connection. Concomitant inhibition of NK1R and PAK1 offered no better protection than inhibition of NK1R alone, consistent with the two proteins being members of the same pathway. Furthermore, NK1R, PAK and MEK inhibitors reduced the induction of TRAIL in ischemia-like conditions. Considering the emerging role of TRAIL in ischemia-mediated cell death, this phenomenon may contribute to the protective effects of these small molecules. Our findings support further exploration of PAK and MEK inhibitors as possible agents to avert ischemic kidney injury.
Collapse
Affiliation(s)
- Evan R Zynda
- a Department of Cell Stress Biology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Mitchell H Maloy
- a Department of Cell Stress Biology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Eugene S Kandel
- a Department of Cell Stress Biology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| |
Collapse
|
6
|
Bai X, Hou X, Tian J, Geng J, Li X. CDK5 promotes renal tubulointerstitial fibrosis in diabetic nephropathy via ERK1/2/PPARγ pathway. Oncotarget 2017; 7:36510-36528. [PMID: 27145370 PMCID: PMC5095017 DOI: 10.18632/oncotarget.9058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) has been documented in podocyte injuries in diabetic nephropathy (DN), however its role in renal tubular epithelial cells has not been elucidated. We report here that CDK5 is detrimental and promotes tubulointerstitial fibrosis (TIF) via the extracellular signal-regulated kinase 1/2 (ERK1/2)/peroxisome proliferator-activated receptor gamma (PPRAγ) pathway in DN. In high glucose cultured NRK52E cells, blocking CDK5 activity inhibited epithelial-to-mesenchymal transition (EMT) and fibrosis via ERK1/2/PPARγ pathway. In diabetic rats, CDK5 inhibitor roscovitine decreased renal fibrosis and improved renal function as demonstrated by a decrease in levels of blood urine nitrogen (BUN), serum creatinine and β2-microglobulin. Further studies revealed that improved renal fibrosis and function in diabetic rats were associated with inactivation of ERK1/2 and PPARγ signaling pathways. In late staged DN patients, the upregulation of CDK5 and p35 activated phosphorylated ERK1/2 and PPARγ, leading to decreased levels of E-cadherin but increased Vimentin and Collagen IV. Accordingly, renal fibrosis and function were worsened as revealed by decreased estimated glomerular filtration rate (eGFR) and increased serum BUN, creatinine, β2-microglobulin, 24-hour proteinuria and urine albumin to creatinine ratio (UACR). These findings demonstrate a novel mechanism that CDK5 increases tubulointerstitial fibrosis by activating the ERK1/2/PPARγ pathway and EMT in DN. CDK5 might have therapeutic potential in diabetic nephropathy.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Xiaoyan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China.,Division of Nephrology, The First Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jianwei Tian
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong, PR China
| | - Jian Geng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiao Li
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| |
Collapse
|
7
|
Zhao W, Yan J, Gao L, Zhao J, Zhao C, Gao C, Luo X, Zhu X. Cdk5 is required for the neuroprotective effect of transforming growth factor-β1 against cerebral ischemia-reperfusion. Biochem Biophys Res Commun 2017; 485:775-781. [DOI: 10.1016/j.bbrc.2017.02.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 12/01/2022]
|
8
|
Liu W, Li J, Song YS, Li Y, Jia YH, Zhao HD. Cdk5 links with DNA damage response and cancer. Mol Cancer 2017; 16:60. [PMID: 28288624 PMCID: PMC5348798 DOI: 10.1186/s12943-017-0611-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 02/05/2017] [Indexed: 12/17/2022] Open
Abstract
As an atypical member of cyclin dependent kinase family, Cyclin dependent kinase 5 (Cdk5) is considered as a neuron-specific kinase in the past decade due to the abundant existence of its activator p35 in post-mitotic neurons. Recent studies show that Cdk5 participates in a series of biological and pathological processes in non-neuronal cells, and is generally dysregulated in various cancer cells. The inhibition or knockdown of Cdk5 has been proven to play an anti-cancer role through various mechanisms, and can synergize the killing effect of chemotherapeutics. DNA damage response (DDR) is a series of regulatory events including DNA damage, cell-cycle arrest, regulation of DNA replication, and repair or bypass of DNA damage to ensure the maintenance of genomic stability and cell viability. Here we describe the regulatory mechanisms of Cdk5, its controversial roles in apoptosis and focus on its links to DDR and cancer.
Collapse
Affiliation(s)
- Wan Liu
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Jun Li
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yu-Shu Song
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yue Li
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China
| | - Yu-Hong Jia
- Department of Pathophysiology, Dalian Medical University, Lvshun South Road West 9, Dalian, 116044, China.
| | - Hai-Dong Zhao
- Department of Breast Surgery, The Second Affiliated Hospital of Dalian Medical University, Zhongshan Road 467, Dalian, 116023, China.
| |
Collapse
|
9
|
DNA damage response in nephrotoxic and ischemic kidney injury. Toxicol Appl Pharmacol 2016; 313:104-108. [PMID: 27984128 DOI: 10.1016/j.taap.2016.10.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.
Collapse
|
10
|
Guevara T. Evaluating the Effects of CDK Inhibitors in Ischemia-Reperfusion Injury Models. Methods Mol Biol 2015; 1336:111-21. [PMID: 26231712 DOI: 10.1007/978-1-4939-2926-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
CDK inhibitors have been used to induce protection in various experimental models. Kidney ischemia-reperfusion (I/R) is a form of acute kidney injury resulting in a cascade of cellular events prompting rapid cellular damage and suppression of kidney function. I/R injury, an inevitable impairment during renal transplant surgery, remains one of the major causes of acute kidney injury and represents the most prominent factor leading to delayed graft function after transplantation. Understanding the molecular events responsible for tubule damage and recovery would help to develop new strategies for organ preservation. This chapter describes procedures to study the effect of CDK inhibitors in the cellular I/R model developed from an epithelial cell line deriving from pig kidney proximal tubule cells (LLC-PK1). We briefly describe methods for determining the protective effect of CDK inhibitors such as activation of caspase 3/7, western blot analysis, gene silencing, and immunoprecipitation.
Collapse
Affiliation(s)
- Tatiana Guevara
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain,
| |
Collapse
|