1
|
Shin DY, Takagi H, Hiroshima M, Matsuoka S, Ueda M. Sphingomyelin metabolism underlies Ras excitability for efficient cell migration and chemotaxis. Cell Struct Funct 2023; 48:145-160. [PMID: 37438131 PMCID: PMC11496829 DOI: 10.1247/csf.23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023] Open
Abstract
In eukaryotic motile cells, the active Ras (Ras-GTP)-enriched domain is generated in an asymmetric manner on the cell membrane through the excitable dynamics of an intracellular signaling network. This asymmetric Ras signaling regulates pseudopod formation for both spontaneous random migration and chemoattractant-induced directional migration. While membrane lipids, such as sphingomyelin and phosphatidylserine, contribute to Ras signaling in various cell types, whether they are involved in the Ras excitability for cell motility is unknown. Here we report that functional Ras excitability requires the normal metabolism of sphingomyelin for efficient cell motility and chemotaxis. The pharmacological blockade of sphingomyelin metabolism by an acid-sphingomyelinase inhibitor, fendiline, and other inhibitors suppressed the excitable generation of the stable Ras-GTP-enriched domain. The suppressed excitability failed to invoke enough basal motility to achieve directed migration under shallow chemoattractant gradients. The fendiline-induced defects in Ras excitability, motility and stimulation-elicited directionality were due to an accumulation of sphingomyelin on the membrane, which could be recovered by exogenous sphingomyelinase or phosphatidylserine without changing the expression of Ras. These results indicate a novel regulatory mechanism of the excitable system by membrane lipids, in which sphingomyelin metabolism provides a membrane environment to ensure Ras excitation for efficient cellular motility and chemotaxis.Key words: cell polarity, cell migration, Ras, excitability, sphingomyelin.
Collapse
Affiliation(s)
- Da Young Shin
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
| | - Hiroaki Takagi
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Department of Physics, School of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- PRESTO, JST
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
AlZahrani WM, AlGhamdi SA, Sohrab SS, Rehan M. Investigating a Library of Flavonoids as Potential Inhibitors of a Cancer Therapeutic Target MEK2 Using in Silico Methods. Int J Mol Sci 2023; 24:4446. [PMID: 36901876 PMCID: PMC10002492 DOI: 10.3390/ijms24054446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The second leading cause of death in the world is cancer. Mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinase (ERK) 1 and 2 (MEK1/2) stand out among the different anticancer therapeutic targets. Many MEK1/2 inhibitors are approved and widely used as anticancer drugs. The class of natural compounds known as flavonoids is well-known for their therapeutic potential. In this study, we focus on discovering novel inhibitors of MEK2 from flavonoids using virtual screening, molecular docking analyses, pharmacokinetic prediction, and molecular dynamics (MD) simulations. A library of drug-like flavonoids containing 1289 chemical compounds prepared in-house was screened against the MEK2 allosteric site using molecular docking. The ten highest-scoring compounds based on docking binding affinity (highest score: -11.3 kcal/mol) were selected for further analysis. Lipinski's rule of five was used to test their drug-likeness, followed by ADMET predictions to study their pharmacokinetic properties. The stability of the best-docked flavonoid complex with MEK2 was examined for a 150 ns MD simulation. The proposed flavonoids are suggested as potential inhibitors of MEK2 and drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Wejdan M. AlZahrani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sayed S. Sohrab
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Kattan WE, Hancock JF. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem J 2020; 477:2893-2919. [PMID: 32797215 PMCID: PMC7891675 DOI: 10.1042/bcj20190839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.
Collapse
Affiliation(s)
- Walaa E. Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
4
|
Jaillais Y, Ott T. The Nanoscale Organization of the Plasma Membrane and Its Importance in Signaling: A Proteolipid Perspective. PLANT PHYSIOLOGY 2020; 182:1682-1696. [PMID: 31857424 PMCID: PMC7140965 DOI: 10.1104/pp.19.01349] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 05/12/2023]
Abstract
Plasma membranes provide a highly selective environment for a large number of transmembrane and membrane-associated proteins. Whereas lateral movement of proteins in this lipid bilayer is possible, it is rather limited in turgid and cell wall-shielded plant cells. However, membrane-resident signaling processes occur on subsecond scales that cannot be explained by simple diffusion models. Accordingly, several receptors and other membrane-associated proteins are organized and functional in membrane nanodomains. Although the general presence of membrane nanodomains has become widely accepted as fact, fundamental functional aspects, the roles of individual lipid species and their interplay with proteins, and aspects of nanodomain maintenance and persistence remain poorly understood. Here, we review the current knowledge of nanodomain organization and function, with a particular focus on signaling processes involving proteins, lipids, and their interactions. Furthermore, we propose new and hypothetical aspects of plant membrane biology that we consider important for future research.
Collapse
Affiliation(s)
- Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France
| | - Thomas Ott
- Cell Biology, Faculty of Biology, Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 2018; 47:13-22. [PMID: 30559268 DOI: 10.1042/bst20170525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023]
Abstract
Small GTPases regulate many aspects of cell logistics by alternating between an inactive, GDP-bound form and an active, GTP-bound form. This nucleotide switch is coupled to a cytosol/membrane cycle, such that GTP-bound small GTPases carry out their functions at the periphery of endomembranes. A global understanding of the molecular determinants of the interaction of small GTPases with membranes and of the resulting supramolecular organization is beginning to emerge from studies of model systems. Recent studies highlighted that small GTPases establish multiple interactions with membranes involving their lipid anchor, their lipididated hypervariable region and elements in their GTPase domain, which combine to determine the strength, specificity and orientation of their association with lipids. Thereby, membrane association potentiates small GTPase interactions with GEFs, GAPs and effectors through colocalization and positional matching. Furthermore, it leads to small GTPase nanoclustering and to lipid demixing, which drives the assembly of molecular platforms in which proteins and lipids co-operate in producing high-fidelity signals through feedback and feedforward loops. Although still fragmentary, these observations point to an integrated model of signaling by membrane-attached small GTPases that involves a diversity of direct and indirect interactions, which can inspire new therapeutic strategies to block their activities in diseases.
Collapse
|
7
|
Mo SP, Coulson JM, Prior IA. RAS variant signalling. Biochem Soc Trans 2018; 46:1325-1332. [PMID: 30287508 PMCID: PMC6195641 DOI: 10.1042/bst20180173] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
RAS proteins are small GTPases that regulate signalling networks that control cellular proliferation and survival. They are frequently mutated in cancer and a commonly occurring group of developmental disorders called RASopathies. We discuss recent findings describing how RAS isoforms and different activating mutations differentially contribute to normal and disease-associated biology and the mechanisms that have been proposed to underpin this.
Collapse
Affiliation(s)
- Stephanie P Mo
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Judy M Coulson
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
8
|
Zhou Y, Prakash P, Gorfe AA, Hancock JF. Ras and the Plasma Membrane: A Complicated Relationship. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031831. [PMID: 29229665 DOI: 10.1101/cshperspect.a031831] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The primary site of Ras signal transduction is the plasma membrane (PM). On the PM, the ubiquitously expressed Ras isoforms, H-, N-, and K-Ras, spatially segregate to nonoverlapping nanometer-sized domains, called nanoclusters, with further lateral segregation into nonoverlapping guanosine triphosphate (GTP)-bound and guanosine diphosphate (GDP)-bound nanoclusters. Effector binding and activation is restricted to GTP nanoclusters, rendering the underlying assembly mechanism essential to Ras signaling. Ras nanoclusters have distinct lipid compositions as a result of lipid-sorting specificity encoded in each Ras carboxy-terminal membrane anchor. The role of the G-domain in regulating anchor-membrane interactions is becoming clearer. Ras G-domains undergo significant conformational orientation changes on guanine nucleotide switch, leading to differential direct contacts between the G-domain and reorganization of the membrane anchor. Ras G-domains also contain weak dimer interfaces, resulting in homodimerization, which is an obligate step of nanoclustering. Modulating the formation of Ras dimers, the lipid composition of the PM or lateral dynamics of key PM phospholipids represent novel mechanisms whereby the extent of Ras nanoclustering can be regulated to tune the gain in Ras signaling circuits.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
9
|
Uzhachenko R, Shanker A, Dupont G. Computational properties of mitochondria in T cell activation and fate. Open Biol 2017; 6:rsob.160192. [PMID: 27852805 PMCID: PMC5133440 DOI: 10.1098/rsob.160192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023] Open
Abstract
In this article, we review how mitochondrial Ca2+ transport (mitochondrial Ca2+ uptake and Na+/Ca2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca2+ signals. Based on recent observations, we propose that the Ca2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional–integral–derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca2+ transport in this process.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA .,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, and the Center for Immunobiology, Vanderbilt University, Nashville, TN, USA
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Sayyed-Ahmad A, Prakash P, Gorfe AA. Distinct dynamics and interaction patterns in H- and K-Ras oncogenic P-loop mutants. Proteins 2017; 85:1618-1632. [PMID: 28498561 DOI: 10.1002/prot.25317] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/27/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022]
Abstract
Despite years of study, the structural or dynamical basis for the differential reactivity and oncogenicity of Ras isoforms and mutants remains unclear. In this study, we investigated the effects of amino acid variations on the structure and dynamics of wild type and oncogenic mutants G12D, G12V, and G13D of H- and K-Ras proteins. Based on data from µs-scale molecular dynamics simulations, we show that the overall structure of the proteins remains similar but there are important differences in dynamics and interaction networks. We identified differences in residue interaction patterns around the canonical switch and distal loop regions, and persistent sodium ion binding near the GTP particularly in the G13D mutants. Our results also suggest that different Ras variants have distinct local structural features and interactions with the GTP, variations that have the potential to affect GTP release and hydrolysis. Furthermore, we found that H-Ras proteins and particularly the G12V and G13D variants are significantly more flexible than their K-Ras counterparts. Finally, while most of the simulated proteins sampled the effector-interacting state 2 conformational state, G12V and G13D H-Ras adopted an open switch state 1 conformation that is defective in effector interaction. These differences have implications for Ras GTPase activity, effector or exchange factor binding, dimerization and membrane interaction. Proteins 2017; 85:1618-1632. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| |
Collapse
|
11
|
Visualization of BRI1 and SERK3/BAK1 Nanoclusters in Arabidopsis Roots. PLoS One 2017; 12:e0169905. [PMID: 28114413 PMCID: PMC5256950 DOI: 10.1371/journal.pone.0169905] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/23/2016] [Indexed: 01/06/2023] Open
Abstract
Brassinosteroids (BRs) are plant hormones that are perceived at the plasma membrane (PM) by the ligand binding receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) and the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASE 3/BRI1 ASSOCIATED KINASE 1 (SERK3/BAK1). To visualize BRI1-GFP and SERK3/BAK1-mCherry in the plane of the PM, variable-angle epifluorescence microscopy (VAEM) was employed, which allows selective illumination of a thin surface layer. VAEM revealed an inhomogeneous distribution of BRI1-GFP and SERK3/BAK1-mCherry at the PM, which we attribute to the presence of distinct nanoclusters. Neither the BRI1 nor the SERK3/BAK1 nanocluster density is affected by depletion of endogenous ligands or application of exogenous ligands. To reveal interacting populations of receptor complexes, we utilized selective-surface observation—fluorescence lifetime imaging microscopy (SSO-FLIM) for the detection of Förster resonance energy transfer (FRET). Using this approach, we observed hetero-oligomerisation of BRI1 and SERK3 in the nanoclusters, which did not change upon depletion of endogenous ligand or signal activation. Upon ligand application, however, the number of BRI1-SERK3 /BAK1 hetero-oligomers was reduced, possibly due to endocytosis of active signalling units of BRI1-SERK3/BAK1 residing in the PM. We propose that formation of nanoclusters in the plant PM is subjected to biophysical restraints, while the stoichiometry of receptors inside these nanoclusters is variable and important for signal transduction.
Collapse
|
12
|
Tenner B, Mehta S, Zhang J. Optical sensors to gain mechanistic insights into signaling assemblies. Curr Opin Struct Biol 2016; 41:203-210. [PMID: 27611602 PMCID: PMC5423777 DOI: 10.1016/j.sbi.2016.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022]
Abstract
Protein complexes play a major role in transducing information from outside the cell into instructions for growth and survival, and understanding how these complexes relay and shape intracellular signals has been a central question in signaling biology. Fluorescent proteins have proven paramount in opening windows for researchers to peer into the architecture and inner workings of signaling assemblies within the living cell and in real-time. In this review, we will provide readers with a current perspective on the development and use of genetically encoded optical probes to dissect the function of signaling complexes.
Collapse
Affiliation(s)
- Brian Tenner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States; Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
13
|
Termini CM, Lidke KA, Gillette JM. Tetraspanin CD82 Regulates the Spatiotemporal Dynamics of PKCα in Acute Myeloid Leukemia. Sci Rep 2016; 6:29859. [PMID: 27417454 PMCID: PMC4945921 DOI: 10.1038/srep29859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/22/2016] [Indexed: 02/08/2023] Open
Abstract
Patients with acute myeloid leukemia (AML) have increased myeloid cells within their bone marrow that exhibit aberrant signaling. Therefore, therapeutic targets that modulate disrupted signaling cascades are of significant interest. In this study, we demonstrate that the tetraspanin membrane scaffold, CD82, regulates protein kinase c alpha (PKCα)-mediated signaling critical for AML progression. Utilizing a palmitoylation mutant form of CD82 with disrupted membrane organization, we find that the CD82 scaffold controls PKCα expression and activation. Combining single molecule and ensemble imaging measurements, we determine that CD82 stabilizes PKCα activation at the membrane and regulates the size of PKCα membrane clusters. Further evaluation of downstream effector signaling identified robust and sustained activation of ERK1/2 upon CD82 overexpression that results in enhanced AML colony formation. Together, these data propose a mechanism where CD82 membrane organization regulates sustained PKCα signaling that results in an aggressive leukemia phenotype. These observations suggest that the CD82 scaffold may be a potential therapeutic target for attenuating aberrant signal transduction in AML.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences Center, University of New Mexico, MSC 08-4640, Albuquerque, NM 87131, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, MSC 07-4220, Albuquerque, NM 87131, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences Center, University of New Mexico, MSC 08-4640, Albuquerque, NM 87131, USA
| |
Collapse
|
14
|
Sherman E, Barr VA, Merrill RK, Regan CK, Sommers CL, Samelson LE. Hierarchical nanostructure and synergy of multimolecular signalling complexes. Nat Commun 2016; 7:12161. [PMID: 27396911 PMCID: PMC4942584 DOI: 10.1038/ncomms12161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 06/07/2016] [Indexed: 01/15/2023] Open
Abstract
Signalling complexes are dynamic, multimolecular structures and sites for intracellular signal transduction. Although they play a crucial role in cellular activation, current research techniques fail to resolve their structure in intact cells. Here we present a multicolour, photoactivated localization microscopy approach for imaging multiple types of single molecules in fixed and live cells and statistical tools to determine the nanoscale organization, topology and synergy of molecular interactions in signalling complexes downstream of the T-cell antigen receptor. We observe that signalling complexes nucleated at the key adapter LAT show a hierarchical topology. The critical enzymes PLCγ1 and VAV1 localize to the centre of LAT-based complexes, and the adapter SLP-76 and actin molecules localize to the periphery. Conditional second-order statistics reveal a hierarchical network of synergic interactions between these molecules. Our results extend our understanding of the nanostructure of signalling complexes and are relevant to studying a wide range of multimolecular complexes.
Collapse
Affiliation(s)
- Eilon Sherman
- Racah Institute of Physics, The Hebrew University,
Jerusalem
91904, Israel
| | - Valarie A. Barr
- Laboratory of Cellular and Molecular Biology, CCR, NCI,
NIH, Bethesda, Maryland
20892, USA
| | - Robert K. Merrill
- Laboratory of Cellular and Molecular Biology, CCR, NCI,
NIH, Bethesda, Maryland
20892, USA
| | - Carole K. Regan
- Laboratory of Cellular and Molecular Biology, CCR, NCI,
NIH, Bethesda, Maryland
20892, USA
| | - Connie L. Sommers
- Laboratory of Cellular and Molecular Biology, CCR, NCI,
NIH, Bethesda, Maryland
20892, USA
| | - Lawrence E. Samelson
- Laboratory of Cellular and Molecular Biology, CCR, NCI,
NIH, Bethesda, Maryland
20892, USA
| |
Collapse
|
15
|
Chavan TS, Muratcioglu S, Marszalek R, Jang H, Keskin O, Gursoy A, Nussinov R, Gaponenko V. Plasma membrane regulates Ras signaling networks. CELLULAR LOGISTICS 2015; 5:e1136374. [PMID: 27054048 PMCID: PMC4820813 DOI: 10.1080/21592799.2015.1136374] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.
Collapse
Affiliation(s)
- Tanmay Sanjeev Chavan
- Department of Medicinal Chemistry; University of Illinois at Chicago; Chicago, IL USA
| | - Serena Muratcioglu
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Richard Marszalek
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago, IL USA
| | - Hyunbum Jang
- Cancer and Inflammation Program; Basic Science Program; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; National Cancer Institute at Frederick; Frederick, MD USA
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program; Basic Science Program; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; National Cancer Institute at Frederick; Frederick, MD USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
16
|
Bosch PJ, Kanger JS, Subramaniam V. Classification of dynamical diffusion states in single molecule tracking microscopy. Biophys J 2015; 107:588-598. [PMID: 25099798 DOI: 10.1016/j.bpj.2014.05.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/04/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022] Open
Abstract
Single molecule tracking of membrane proteins by fluorescence microscopy is a promising method to investigate dynamic processes in live cells. Translating the trajectories of proteins to biological implications, such as protein interactions, requires the classification of protein motion within the trajectories. Spatial information of protein motion may reveal where the protein interacts with cellular structures, because binding of proteins to such structures often alters their diffusion speed. For dynamic diffusion systems, we provide an analytical framework to determine in which diffusion state a molecule is residing during the course of its trajectory. We compare different methods for the quantification of motion to utilize this framework for the classification of two diffusion states (two populations with different diffusion speed). We found that a gyration quantification method and a Bayesian statistics-based method are the most accurate in diffusion-state classification for realistic experimentally obtained datasets, of which the gyration method is much less computationally demanding. After classification of the diffusion, the lifetime of the states can be determined, and images of the diffusion states can be reconstructed at high resolution. Simulations validate these applications. We apply the classification and its applications to experimental data to demonstrate the potential of this approach to obtain further insights into the dynamics of cell membrane proteins.
Collapse
Affiliation(s)
- Peter J Bosch
- Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Johannes S Kanger
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands.
| |
Collapse
|
17
|
Nussinov R, Jang H. Dynamic multiprotein assemblies shape the spatial structure of cell signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:158-64. [PMID: 25046855 PMCID: PMC4250281 DOI: 10.1016/j.pbiomolbio.2014.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Neve-Oz Y, Razvag Y, Sajman J, Sherman E. Mechanisms of localized activation of the T cell antigen receptor inside clusters. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:810-21. [PMID: 25300584 DOI: 10.1016/j.bbamcr.2014.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/07/2014] [Accepted: 09/29/2014] [Indexed: 01/21/2023]
Abstract
The T cell antigen receptor (TCR) has been shown to cluster both before and upon engagement with cognate antigens. However, the effect of TCR clustering on its activation remains poorly understood. Here, we used two-color photo-activated localization microscopy (PALM) to visualize individual molecules of TCR and ZAP-70, as a marker of TCR activation and phosphorylation, at the plasma membrane of uniformly activated T cells. Imaging and second-order statistics revealed that ZAP-70 recruitment and TCR activation localized inside TCR clusters. Live cell PALM imaging showed that the extent of localized TCR activation decreased, yet remained significant, with cell spreading. Using dynamic modeling and Monte-Carlo simulations we evaluated possible mechanisms of localized TCR activation. Our simulations indicate that localized TCR activation is the result of long-range cooperative interactions between activated TCRs, or localized activation by Lck and Fyn. Our results demonstrate the role of molecular clustering in cell signaling and activation, and are relevant to studying a wide range of multi-molecular complexes. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Yair Neve-Oz
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Yair Razvag
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
19
|
Clancy T, Hovig E. From proteomes to complexomes in the era of systems biology. Proteomics 2014; 14:24-41. [PMID: 24243660 DOI: 10.1002/pmic.201300230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 01/16/2023]
Abstract
Protein complexes carry out almost the entire signaling and functional processes in the cell. The protein complex complement of a cell, and its network of complex-complex interactions, is referred to here as the complexome. Computational methods to predict protein complexes from proteomics data, resulting in network representations of complexomes, have recently being developed. In addition, key advances have been made toward understanding the network and structural organization of complexomes. We review these bioinformatics advances, and their discovery-potential, as well as the merits of integrating proteomics data with emerging methods in systems biology to study protein complex signaling. It is envisioned that improved integration of proteomics and systems biology, incorporating the dynamics of protein complexes in space and time, may lead to more predictive models of cell signaling networks for effective modulation.
Collapse
Affiliation(s)
- Trevor Clancy
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
20
|
Prakash P, Gorfe AA. Overview of simulation studies on the enzymatic activity and conformational dynamics of the GTPase Ras. MOLECULAR SIMULATION 2014; 40:839-847. [PMID: 26491216 DOI: 10.1080/08927022.2014.895000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the last 40 years, we have learnt a great deal about the Ras onco-proteins. These intracellular molecular switches are essential for the function of a variety of physiological processes, including signal transduction cascades responsible for cell growth and proliferation. Molecular simulations and free energy calculations have played an essential role in elucidating the conformational dynamics and energetics underlying the GTP hydrolysis reaction catalysed by Ras. Here we present an overview of the main lessons from molecular simulations on the GTPase reaction and conformational dynamics of this important anti-cancer drug target. In the first part, we summarise insights from quantum mechanical and combined quantum mechanical/molecular mechanical simulations as well as other free energy methods and highlight consensus viewpoints as well as remaining controversies. The second part provides a very brief overview of new insights emerging from large-scale molecular dynamics simulations. We conclude with a perspective regarding future studies of Ras where computational approaches will likely play an active role.
Collapse
Affiliation(s)
- Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, 6431 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
21
|
Ashton-Beaucage D, Udell CM, Gendron P, Sahmi M, Lefrançois M, Baril C, Guenier AS, Duchaine J, Lamarre D, Lemieux S, Therrien M. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila. PLoS Biol 2014; 12:e1001809. [PMID: 24643257 PMCID: PMC3958334 DOI: 10.1371/journal.pbio.1001809] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
A global RNAi screening approach in Drosophila cells identifies a large group of transcription and splicing factors that modulate RAS/MAPK signaling by altering the expression of MAPK. The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also specifically impact alternative splicing. The RAS/MAPK pathway is a cornerstone of the cell proliferation signaling apparatus. It has a notable involvement in cancer as mutations in the components of the pathway are associated with aberrant proliferation. Previous work has focused predominantly on post-translational regulation of RAS/MAPK signaling such that a large and intricate network of factors is now known to act on core pathway components. However, regulation at the pre-translational level has not been examined nearly as extensively and is comparatively poorly understood. In this study, we used an unbiased and global screening approach to survey the Drosophila genome—using Drosophila cultured cells—for novel regulators of this pathway. Surprisingly, a majority of our hits were associated to either transcription or mRNA splicing. We used a series of secondary screening assays to determine which part of the RAS/MAPK pathway these candidates target. We found that these factors were not equally distributed along the pathway, but rather converged predominantly on mapk mRNA expression and processing. Our findings raise the intriguing possibility that regulation of mapk transcript production is a key step for a diverse set of regulatory inputs, and may play an important part in RAS/MAPK signaling dynamics.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Christian M. Udell
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Caroline Baril
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Anne-Sophie Guenier
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département d'informatique et de recherche opérationnelle, Université de Montréal, Montréal, Québec, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Québec, Canada
- Département de pathologie et de biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
22
|
Dodgson J, Chessel A, Yamamoto M, Vaggi F, Cox S, Rosten E, Albrecht D, Geymonat M, Csikasz-Nagy A, Sato M, Carazo-Salas RE. Spatial segregation of polarity factors into distinct cortical clusters is required for cell polarity control. Nat Commun 2013; 4:1834. [PMID: 23673619 PMCID: PMC3674234 DOI: 10.1038/ncomms2813] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/26/2013] [Indexed: 01/06/2023] Open
Abstract
Cell polarity is regulated by evolutionarily conserved polarity factors whose precise higher-order organization at the cell cortex is largely unknown. Here we image frontally the cortex of live fission yeast cells using time-lapse and super-resolution microscopy. Interestingly, we find that polarity factors are organized in discrete cortical clusters resolvable to ~50–100 nm in size, which can form and become cortically enriched by oligomerization. We show that forced co-localization of the polarity factors Tea1 and Tea3 results in polarity defects, suggesting that the maintenance of both factors in distinct clusters is required for polarity. However, during mitosis, their co-localization increases, and Tea3 helps to retain the cortical localization of the Tea1 growth landmark in preparation for growth reactivation following mitosis. Thus, regulated spatial segregation of polarity factor clusters provides a means to spatio-temporally control cell polarity at the cell cortex. We observe similar clusters in Saccharomyces cerevisiae and Caenorhabditis elegans cells, indicating this could be a universal regulatory feature. Cell polarity is generated and maintained by the spatial accumulation of polarity factors. By imaging fission yeast cells ‘end-on’, the authors show that the polarity factors Tea1 and Tea3 segregate into distinct clusters, and that surprisingly, their segregation is critical for cell polarization.
Collapse
Affiliation(s)
- James Dodgson
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The spatial structure of the cell is highly organized at all levels: from small complexes and assemblies, to local nano- and microclusters, to global, micrometer scales across and between cells. We suggest that this multiscale spatial cell organization also organizes signaling and coordinates cellular behavior. We propose a new view of the spatial structure of cell signaling systems. This new view describes cell signaling in terms of dynamic allosteric interactions within and among distinct, spatially organized transient clusters. The clusters vary over time and space and are on length scales from nanometers to micrometers. When considered across these length scales, primary factors in the spatial organization are cell membrane domains and the actin cytoskeleton, both also highly dynamic. A key challenge is to understand the interplay across these multiple scales, link it to the physicochemical basis of the conformational behavior of single molecules and ultimately relate it to cellular function. Overall, our premise is that at these scales, cell signaling should be thought of not primarily as a sequence of diffusion-controlled molecular collisions, but instead transient, allostery-driven cluster re-forming interactions.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
24
|
Prakash P, Gorfe AA. Lessons from computer simulations of Ras proteins in solution and in membrane. Biochim Biophys Acta Gen Subj 2013; 1830:5211-8. [PMID: 23906604 DOI: 10.1016/j.bbagen.2013.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role. SCOPE OF REVIEW Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments. MAJOR CONCLUSIONS The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research. GENERAL SIGNIFICANCE Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Priyanka Prakash
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
25
|
Ras-guanine-nucleotide-releasing factors 1 and 2 interact with PLCγ at focal adhesions to enable IL-1-induced Ca(2+) signalling, ERK activation and MMP-3 expression. Biochem J 2013; 449:771-82. [PMID: 23145787 DOI: 10.1042/bj20121170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IL (interleukin)-1 signalling in anchorage-dependent cells involves focal-adhesion-restricted and Ca2+-dependent Ras and ERK (extracellular-signal-regulated kinase) activation that leads to MMP (matrix metalloproteinase) release and extracellular matrix remodelling. Ras activity is regulated, in part, by the Ca2+-responsive Ras GRFs (guanine-nucleotide-releasing factors) 1 and 2, but the mechanisms that link and localize IL-1-induced Ca2+ signalling to focal adhesions are not defined. In the present study we characterized the role of Ras-GRF1/2 in Ca2+ and Ras→ERK signalling after IL-1 stimulation. By immunoprecipitation we found that Ras-GRF1/2 associates with PLCγ1 (phospholipase Cγ1). This association enables PLCγ1 recruitment to focal adhesions and is required for Ras signalling, ERK activation and MMP-3 release downstream of IL-1 stimulation. Depletion of PLCγ1 by siRNA (small interfering RNA) abolished IL-1-induced Ras activation and MMP-3 expression. Buffering of cytosolic Ca2+ reduced Ras interactions with Ras-GRF1/2 and blocked MMP-3 release. The results of the present study show that, in addition to their functions as Ras-exchange factors, Ras-GRF1 and -GRF2 may act as adaptors that bind PLCγ1 and restrict Ca2+ signalling to the vicinity of focal adhesions, indicating a new role for these GRFs that is required for IL-1 induction of the Ras→ERK pathway and MMP-3 expression.
Collapse
|
26
|
Abstract
Ras proteins on the plasma membrane are laterally segregated into transient nanoclusters that are essential for high-fidelity signal transmission by the Ras/MAPK cascade. The dynamics of Ras nanocluster assembly and disassembly control MAPK signal output. BRaf inhibitors paradoxically activate CRaf and MAPK signaling in Ras-transformed cells. In our recent study, we showed that BRaf inhibition significantly enhances nanoclustering of oncogenic K- and N-Ras, but not H-Ras by increasing the frequency of Ras nanocluster formation. This disrupted spatiotemporal dynamics of Ras nanocluster fully accounts for the observed effects of Raf inhibitors on Ras signal transmission. Here together with other studies, we propose that the dynamics of Ras nanoclusters may represent a novel target for future therapeutic intervention.
Collapse
Affiliation(s)
- Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, Houston, TX, USA
| | | |
Collapse
|
27
|
Güldenhaupt J, Rudack T, Bachler P, Mann D, Triola G, Waldmann H, Kötting C, Gerwert K. N-Ras forms dimers at POPC membranes. Biophys J 2012; 103:1585-93. [PMID: 23062351 DOI: 10.1016/j.bpj.2012.08.043] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022] Open
Abstract
Ras is a central regulator of cellular signaling pathways. It is mutated in 20-30% of human tumors. To perform its function, Ras has to be bound to a membrane by a posttranslationally attached lipid anchor. Surprisingly, we identified here dimerization of membrane anchored Ras by combining attenuated total reflectance Fourier transform infrared spectroscopy, biomolecular simulations, and Förster resonance energy transfer experiments. By analyzing x-ray structural models and molecular-dynamics simulations, we propose a dimerization interface between α-helices 4 and 5 and the loop between β2 and β3. This seems to explain why the residues D47, E49, R135, R161, and R164 of this interface are influencing Ras signaling in cellular physiological experiments, although they are not positioned in the catalytic site. Dimerization could catalyze nanoclustering, which is well accepted for membrane-bound Ras. The interface could provide a new target for a seemingly novel type of small molecule interfering with signal transduction in oncogenic Ras mutants.
Collapse
Affiliation(s)
- Jörn Güldenhaupt
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cho KJ, Kasai RS, Park JH, Chigurupati S, Heidorn SJ, van der Hoeven D, Plowman SJ, Kusumi A, Marais R, Hancock JF. Raf inhibitors target ras spatiotemporal dynamics. Curr Biol 2012; 22:945-55. [PMID: 22560614 DOI: 10.1016/j.cub.2012.03.067] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/10/2012] [Accepted: 03/20/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND The lateral segregation of Ras proteins into transient plasma membrane nanoclusters is essential for high-fidelity signal transmission by the Ras mitogen-activated protein kinase (MAPK) cascade. In this spatially constrained signaling system, the dynamics of Ras nanocluster assembly and disassembly control MAPK signal output. RESULTS We show here that BRaf inhibitors paradoxically activate CRaf and MAPK signaling in Ras transformed cells by profoundly dysregulating Ras nanocluster dynamics. Specifically, BRaf inhibitors selectively enhance the plasma membrane nanoclustering of oncogenic K-Ras and N-Ras but have no effect on H-Ras nanoclustering. Raf inhibitors are known to drive the formation of stable BRaf-CRaf and CRaf-CRaf dimers. Our results demonstrate that the presence of two Ras-binding domains in a single Raf dimer is sufficient and required to increase Ras nanoclustering, indicating that Raf dimers promote K- and N-Ras nanocluster formation by crosslinking constituent Ras proteins. Ras crosslinking increases the fraction of K-Ras and N-Ras in their cognate nanoclusters, leading to an increase in MAPK output from the plasma membrane. Intriguingly, increased MAPK signaling in BRaf inhibited cells is accompanied by significantly decreased Akt activation. We show that this signal pathway crosstalk results from a novel mechanism of competition between stabilized Raf dimers and p110α for recruitment to Ras nanoclusters. CONCLUSIONS Our findings reveal that BRaf inhibitors disrupt Ras nanocluster dynamics with significant, yet divergent, consequences for MAPK and PI3K signaling.
Collapse
Affiliation(s)
- Kwang-jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School-Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Whitacre JM. Biological robustness: paradigms, mechanisms, and systems principles. Front Genet 2012; 3:67. [PMID: 22593762 PMCID: PMC3350086 DOI: 10.3389/fgene.2012.00067] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/05/2012] [Indexed: 12/31/2022] Open
Abstract
Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior.
Collapse
|
30
|
Abstract
Cells continuously communicate with the surrounding environment employing variety of signaling molecules and pathways to integrate and transport the information in the cell. An example of signaling initiation is binding of extracellular ligand to its receptor at the plasma membrane. This initializes enzymatic reactions leading to the formation of bi- or multimolecular signaling complexes responsible for the regulation or progress of signal transduction. Here, we describe three imaging techniques enabling detection of individual signaling molecules, their complexes, and clusters in human cells. Described imaging techniques require only basic microscopy systems available in the majority of current biomedical research centers but apply advanced data processing. First, total internal reflection fluorescence microscopy (TIRFM) variant of wide-field fluorescence microscopy for imaging highly dynamic clusters is described. Second, superresolution localization microscopy techniques-photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)-recently enabled to achieve higher resolution with precision limit of about 20 nm in fixed samples. The developments toward live cell superresolution imaging are indicated. Third, raster image correlation spectroscopy (RICS) employed for molecular diffusion and binding analysis explains the advantages and hurdles of this novel method. Presented techniques provide a new level of detail one can learn about higher organization of signaling events in human cells.
Collapse
|
31
|
Sherman E, Barr V, Manley S, Patterson G, Balagopalan L, Akpan I, Regan CK, Merrill RK, Sommers CL, Lippincott-Schwartz J, Samelson LE. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 2011; 35:705-20. [PMID: 22055681 DOI: 10.1016/j.immuni.2011.10.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 08/03/2011] [Accepted: 10/05/2011] [Indexed: 01/16/2023]
Abstract
Receptor-regulated cellular signaling often is mediated by formation of transient, heterogeneous protein complexes of undefined structure. We used single and two-color photoactivated localization microscopy to study complexes downstream of the T cell antigen receptor (TCR) in single-molecule detail at the plasma membrane of intact T cells. The kinase ZAP-70 distributed completely with the TCRζ chain and both partially mixed with the adaptor LAT in activated cells, thus showing localized activation of LAT by TCR-coupled ZAP-70. In resting and activated cells, LAT primarily resided in nanoscale clusters as small as dimers whose formation depended on protein-protein and protein-lipid interactions. Surprisingly, the adaptor SLP-76 localized to the periphery of LAT clusters. This nanoscale structure depended on polymerized actin and its disruption affected TCR-dependent cell function. These results extend our understanding of the mechanism of T cell activation and the formation and organization of TCR-mediated signaling complexes, findings also relevant to other receptor systems.
Collapse
Affiliation(s)
- Eilon Sherman
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 2011; 23:145-53. [PMID: 21924373 DOI: 10.1016/j.semcdb.2011.09.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 12/30/2022]
Abstract
Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes.
Collapse
|
33
|
López JM. Digital kinases: A cell model for sensing, integrating and making choices. Commun Integr Biol 2011; 3:146-50. [PMID: 20585507 DOI: 10.4161/cib.3.2.10365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 11/19/2022] Open
Abstract
Protein kinases mediate most of the signal transduction in eukaryotic cells, controlling important cellular processes. Functioning as sensors and switches, kinases play a critical role in the regulation of cell fate decisions: proliferation, differentiation or death. Cellular sensors must have signaling properties well suited for the processing and propagation of external or internal stimuli that promote irreversible processes. These properties include ultrasensitivity, hysteresis and digital responses. Ultrasensitivity means to produce a very large response to a small increase in stimulus after a threshold is crossed, hysteresis (a form of biochemical memory) means sustained activation when the stimulus has disappeared, and digital is an all-ornone response at a single cell level. These properties are present in JNK, a stress protein kinase that regulates cell death. In a recent article, we have characterized Xenopus AMPK, a stress protein kinase that controls energy levels in the cell, showing that is regulated similar to the mammalian ortholog. By using Xenopus oocytes we studied the AMPK signaling system and compared to JNK. Our work showed that AMPK is ultrasensitive to an apoptotic stimulus (hyperosmolar sorbitol) but, in contrast to JNK, does not show hysteresis. By single cell analysis we found that the response of AMPK and JNK to hyperosmolar sorbitol is all-or-none (digital) in character, and that initial graded responses of both protein kinases are converted into digital during the critical period of cytochrome c release. We proposed a model to explain the cell death program as integration of multiple digital signals from stress sensors, that now I extend to a more general model for sensing, integrating and making choices in the cell and the organism.
Collapse
Affiliation(s)
- José M López
- Institut de Neurociències i Departament de Bioquímica i Biología Molecular; Unitat de Bioquímica; Facultad de Medicina; Universitat Autònoma de Barcelona; Barcelona, Spain
| |
Collapse
|
34
|
Janosi L, Gorfe AA. Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. Biophys J 2011; 99:3666-74. [PMID: 21112291 DOI: 10.1016/j.bpj.2010.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022] Open
Abstract
The Kras protein, a member of the Ras family of bio-switches that are frequently mutated in cancer and developmental disorders, becomes functional when anchored to the inner surface of the plasma membrane. It is well known that membrane attachment involves the farnesylated and poylcationic C-terminus of the protein. However, little is known about the structure of the complex and the specific protein-lipid interactions that are responsible for the binding. On the basis of data from extensive (>0.55 μs) molecular dynamics simulations of multiple Kras anchors in bilayers of POPC/POPG lipids (4:1 ratio), we show that, as expected, Kras is tethered to the bilayer surface by specific lysine-POPG salt bridges and by nonspecific farnesyl-phospholipid van der Waals interactions. Unexpectedly, however, only the C-terminal five of the eight Kras Lys side chains were found to directly interact with the bilayer, with the N-terminal ones staying in water. Furthermore, the positively charged Kras anchors pull the negatively charged POPG lipids together, leading to the clustering of the POPG lipids around the proteins. This selective Kras-POPG interaction is directly related to the specific geometry of the backbone, which exists in two major conformational states: 1), a stable native-like ensemble of structures characterized by an extended geometry with a pseudohelical turn; and 2), less stable nonnative ensembles of conformers characterized by severely bent geometries. Finally, although the interface-bound anchor has little effect on the overall structure of the bilayer, it induces local thinning within a persistence length of ∼12 Å. Our results thus go beyond documenting how Kras attaches to a mixed bilayer of charged and neutral lipids; they highlight a fascinating process of protein-induced lipid sorting coupled with the (re)shaping of a surface-bound protein by the host lipids.
Collapse
Affiliation(s)
- Lorant Janosi
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
35
|
Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling. Bioorg Med Chem 2011; 19:1376-80. [DOI: 10.1016/j.bmc.2010.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/08/2010] [Accepted: 11/08/2010] [Indexed: 01/18/2023]
|
36
|
Cebecauer M, Spitaler M, Sergé A, Magee AI. Signalling complexes and clusters: functional advantages and methodological hurdles. J Cell Sci 2010; 123:309-20. [PMID: 20130139 DOI: 10.1242/jcs.061739] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Signalling molecules integrate, codify and transport information in cells. Organisation of these molecules in complexes and clusters improves the efficiency, fidelity and robustness of cellular signalling. Here, we summarise current views on how signalling molecules assemble into macromolecular complexes and clusters and how they use their physical properties to transduce environmental information into a variety of cellular processes. In addition, we discuss recent innovations in live-cell imaging at the sub-micrometer scale and the challenges of object (particle) tracking, both of which help us to observe signalling complexes and clusters and to examine their dynamic character.
Collapse
Affiliation(s)
- Marek Cebecauer
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
37
|
Abstract
Activating mutations of NRAS are common in acute myeloid leukemia, chronic myelomonocytic leukemia, and myelodysplastic syndrome. Like all RAS proteins, NRAS must undergo a series of post-translational modifications for differential targeting to distinct membrane subdomains. Although farnesylation is the obligatory first step in post-translational modifications of RAS, to date, successes of therapies targeting farnesyl protein transferase are modest. Other RAS modifications, such as palmitoylation, are required for optimal plasma membrane association of RAS proteins. However, the relative importance of these latter modifications of RAS in leukemogenesis is not clear. We have previously shown that expression of oncogenic NRAS using a bone marrow transduction and transplantation model efficiently induces a chronic myelomonocytic leukemia- or acute myeloid leukemia-like disease in mice. Here we examined the role of palmitoylation in NRAS leukemogenesis using this model. We found that palmitoylation is essential for leukemogenesis by oncogenic NRAS. We also found that farnesylation is essential for NRAS leukemogenesis, yet through a different mechanism from that of palmitoylation deficiency. This study demonstrates, for the first time, that palmitoylation is an essential process for NRAS leukemogenesis and suggests that the development of therapies targeting RAS palmitoylation may be effective in treating oncogenic NRAS-associated malignancies.
Collapse
|
38
|
Inder KL, Lau C, Loo D, Chaudhary N, Goodall A, Martin S, Jones A, van der Hoeven D, Parton RG, Hill MM, Hancock JF. Nucleophosmin and nucleolin regulate K-Ras plasma membrane interactions and MAPK signal transduction. J Biol Chem 2009; 284:28410-28419. [PMID: 19661056 PMCID: PMC2788890 DOI: 10.1074/jbc.m109.001537] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/06/2009] [Indexed: 01/07/2023] Open
Abstract
The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3.
Collapse
Affiliation(s)
- Kerry L Inder
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Chiyan Lau
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Dorothy Loo
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia; Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane 4102, Australia
| | - Natasha Chaudhary
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Andrew Goodall
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Sally Martin
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Dharini van der Hoeven
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia; Centre for Microscopy and Microanalysis, University of Queensland, Brisbane 4072, Australia
| | - Michelle M Hill
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia; Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane 4102, Australia.
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030.
| |
Collapse
|
39
|
Edreira MM, Li S, Hochbaum D, Wong S, Gorfe AA, Ribeiro-Neto F, Woods VL, Altschuler DL. Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop. J Biol Chem 2009; 284:27480-6. [PMID: 19651783 DOI: 10.1074/jbc.m109.011312] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rap1b has been implicated in the transduction of the cAMP mitogenic response. Agonists that increase intracellular cAMP rapidly activate (i.e. GTP binding) and phosphorylate Rap1b on Ser(179) at its C terminus. cAMP-dependent protein kinase (PKA)-mediated phosphorylation of Rap1b is required for cAMP-dependent mitogenesis, tumorigenesis, and inhibition of AKT activity. However, the role of phosphorylation still remains unknown. In this study, we utilized amide hydrogen/deuterium exchange mass spectroscopy (DXMS) to assess potential conformational changes and/or mobility induced by phosphorylation. We report here DXMS data comparing exchange rates for PKA-phosphorylated (Rap1-P) and S179D phosphomimetic (Rap1-D) Rap1b proteins. Rap1-P and Rap1-D behaved exactly the same, revealing an increased exchange rate in discrete regions along the protein; these regions include a domain around the phosphorylation site and unexpectedly the two switch loops. Thus, local effects induced by Ser(179) phosphorylation communicate allosterically with distal domains involved in effector interaction. These results provide a mechanistic explanation for the differential effects of Rap1 phosphorylation by PKA on effector protein interaction.
Collapse
Affiliation(s)
- Martin M Edreira
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dhillon AS, Yip YY, Grindlay GJ, Pakay JL, Dangers M, Hillmann M, Clark W, Pitt A, Mischak H, Kolch W. The C-terminus of Raf-1 acts as a 14-3-3-dependent activation switch. Cell Signal 2009; 21:1645-51. [PMID: 19595761 DOI: 10.1016/j.cellsig.2009.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 01/08/2023]
Abstract
The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein-protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.
Collapse
Affiliation(s)
- Amardeep S Dhillon
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Bioscience and Biotechnology, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gurry T, Kahramanoğulları O, Endres RG. Biophysical mechanism for ras-nanocluster formation and signaling in plasma membrane. PLoS One 2009; 4:e6148. [PMID: 19587789 PMCID: PMC2704371 DOI: 10.1371/journal.pone.0006148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/07/2009] [Indexed: 01/02/2023] Open
Abstract
Ras GTPases are lipid-anchored G proteins, which play a fundamental role in cell signaling processes. Electron micrographs of immunogold-labeled Ras have shown that membrane-bound Ras molecules segregate into nanocluster domains. Several models have been developed in attempts to obtain quantitative descriptions of nanocluster formation, but all have relied on assumptions such as a constant, expression-level independent ratio of Ras in clusters to Ras monomers (cluster/monomer ratio). However, this assumption is inconsistent with the law of mass action. Here, we present a biophysical model of Ras clustering based on short-range attraction and long-range repulsion between Ras molecules in the membrane. To test this model, we performed Monte Carlo simulations and compared statistical clustering properties with experimental data. We find that we can recover the experimentally-observed clustering across a range of Ras expression levels, without assuming a constant cluster/monomer ratio or the existence of lipid rafts. In addition, our model makes predictions about the signaling properties of Ras nanoclusters in support of the idea that Ras nanoclusters act as an analog-digital-analog converter for high fidelity signaling.
Collapse
Affiliation(s)
- Thomas Gurry
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Ozan Kahramanoğulları
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Department of Computing, Imperial College London, London, United Kingdom
| | - Robert G. Endres
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Abstract
Differential subcellular compartmentalization of the three main Ras isoforms (H-Ras, N-Ras and K-Ras) is believed to underlie their biological differences. Modulatable interactions between cellular membranes and Ras C-terminal hypervariable region motifs determine differences in trafficking and the relative proportions of each isoform in cell-surface signalling nanoclusters and intracellular endoplasmic reticulum/Golgi, endosomal and mitochondrial compartments. Ras regulators, effectors and scaffolds are also differentially distributed, potentially enabling preferential coupling to specific signalling pathways in each subcellular location. Here we summarize the mechanisms underlying compartment-specific Ras signalling and the outputs generated.
Collapse
|
43
|
A Mek1–Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol 2009; 16:294-303. [DOI: 10.1038/nsmb.1564] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 01/23/2009] [Indexed: 01/07/2023]
|
44
|
KSR1 modulates the sensitivity of mitogen-activated protein kinase pathway activation in T cells without altering fundamental system outputs. Mol Cell Biol 2009; 29:2082-91. [PMID: 19188442 DOI: 10.1128/mcb.01634-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that regulate cell fate decisions. They generate a wide range of signal outputs, including graded and digital responses. In T cells, MAPK activation is digital in response to T-cell-receptor stimulation; however, whether other receptors on T cells that lead to MAPK activation are graded or digital is unknown. Here we evaluate MAPK activation in T cells at the single-cell level. We show that T cells responded digitally to stimulation with superantigen-loaded antigen-presenting cells, whereas they responded in a graded manner to the chemokine SDF-1, demonstrating that the system output of the MAPK module is highly plastic and determined by components upstream of the MAPK module. These findings also confirm that different MAPK system outputs are used by T cells to control discrete biological functions. Scaffold proteins are essential for proper MAPK signaling and function as they physically assemble multiple components and regulators of MAPK cascades. We found that the scaffold protein KSR1 regulated the threshold required for MAPK activation in T cells without affecting the nature of the response. We conclude that KSR1 plays a central role in determining the sensitivity of T-cell responses and is thus well positioned as a key control point.
Collapse
|
45
|
Henis YI, Hancock JF, Prior IA. Ras acylation, compartmentalization and signaling nanoclusters (Review). Mol Membr Biol 2008; 26:80-92. [PMID: 19115142 DOI: 10.1080/09687680802649582] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ras proteins have become paradigms for isoform- and compartment-specific signaling. Recent work has shown that Ras isoforms are differentially distributed within cell surface signaling nanoclusters and on endomembranous compartments. The critical feature regulating Ras protein localization and isoform-specific functions is the C-terminal hypervariable region (HVR). In this review we discuss the differential post-translational modifications and reversible targeting functions of Ras isoform HVR motifs. We describe how compartmentalized Ras signaling has specific functional consequences and how cell surface signaling nanoclusters generate precise signaling outputs.
Collapse
Affiliation(s)
- Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
46
|
Marks DL, Bittman R, Pagano RE. Use of Bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem Cell Biol 2008; 130:819-32. [PMID: 18820942 PMCID: PMC3922293 DOI: 10.1007/s00418-008-0509-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2008] [Indexed: 01/28/2023]
Abstract
Much evidence has accumulated to show that cellular membranes such as the plasma membrane, contain multiple "microdomains" of differing lipid and protein composition and function. These domains are sometimes enriched in cholesterol and sphingolipids and are believed to be important structures for the regulation of many biological and pathological processes. This review focuses on the use of fluorescent (Bodipy) labeled analogs of sphingolipids and cholesterol to study such domains. We discuss the similarities between the behavior of Bodipy-cholesterol and natural cholesterol in artificial bilayers and in cultured cells, and the use of Bodipy-sphingolipid analogs to visualize membrane domains in living cells based on the concentration-dependent monomer-excimer fluorescence properties of the Bodipy-fluorophore. The use of Bodipy-D-erythro-lactosylceramide is highlighted for detection of domains on the plasma membrane and endosome membranes, and the importance of the sphingolipid stereochemistry in modulating domain formation is discussed. Finally, we suggest that Bodipy-sphingolipids may be useful in future studies to examine the relationship between membrane domains at the cell surface and domains enriched in other lipids and proteins on the inner leaflet of the plasma membrane.
Collapse
Affiliation(s)
- David L. Marks
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Stabile 8, 200 First Street, SW, Rochester, MN 55905-0001, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Stabile 8, 200 First Street, SW, Rochester, MN 55905-0001, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, NY 11367, USA
| | - Richard E. Pagano
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Stabile 8, 200 First Street, SW, Rochester, MN 55905-0001, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Stabile 8, 200 First Street, SW, Rochester, MN 55905-0001, USA
| |
Collapse
|
47
|
Inder K, Harding A, Plowman SJ, Philips MR, Parton RG, Hancock JF. Activation of the MAPK module from different spatial locations generates distinct system outputs. Mol Biol Cell 2008; 19:4776-84. [PMID: 18784252 DOI: 10.1091/mbc.e08-04-0407] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Ras/Raf/MEK/ERK (MAPK) pathway directs multiple cell fate decisions within a single cell. How different system outputs are generated is unknown. Here we explore whether activating the MAPK module from different membrane environments can rewire system output. We identify two classes of nanoscale environment within the plasma membrane. The first, which corresponds to nanoclusters occupied by GTP-loaded H-, N- or K-Ras, supports Raf activation and amplifies low Raf kinase input to generate a digital ERKpp output. The second class, which corresponds to nanoclusters occupied by GDP-loaded Ras, cannot activate Raf and therefore does not activate the MAPK module, illustrating how lateral segregation on plasma membrane influences signal output. The MAPK module is activated at the Golgi, but in striking contrast to the plasma membrane, ERKpp output is analog. Different modes of Raf activation precisely correlate with these different ERKpp system outputs. Intriguingly, the Golgi contains two distinct membrane environments that generate ERKpp, but only one is competent to drive PC12 cell differentiation. The MAPK module is not activated from the ER. Taken together these data clearly demonstrate that the different nanoscale environments available to Ras generate distinct circuit configurations for the MAPK module, bestowing cells with a simple mechanism to generate multiple system outputs from a single cascade.
Collapse
Affiliation(s)
- Kerry Inder
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Using plasma membrane nanoclusters to build better signaling circuits. Trends Cell Biol 2008; 18:364-71. [PMID: 18620858 DOI: 10.1016/j.tcb.2008.05.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 01/06/2023]
Abstract
Cellular signaling pathways do not simply transmit data; they integrate and process signals to operate as switches, oscillators, logic gates, memory modules and many other types of control system. These complex processing capabilities enable cells to respond appropriately to the myriad of external cues that direct growth and development. The idea that crosstalk and feedback loops are used as control systems in biological signaling networks is well established. Signaling networks are also subject to exquisite spatial regulation, yet how spatial control modulates signal outputs is less well understood. Here, we explore the spatial organization of two different signal transduction circuits: receptor tyrosine kinase activation of the mitogen-activated protein kinase module; and glycosylphosphatidylinositol-anchored receptor activation of phospholipase C. With regards to these pathways, recent results have refocused attention on the crucial role of lipid rafts and plasma membrane nanodomains in signal transmission. We identify common design principals that highlight how the spatial organization of signal transduction circuits can be used as a fundamental control mechanism to modulate system outputs in vivo.
Collapse
|