1
|
Saito S, Ku CC, Wuputra K, Pan JB, Lin CS, Lin YC, Wu DC, Yokoyama KK. Biomarkers of Cancer Stem Cells for Experimental Research and Clinical Application. J Pers Med 2022; 12:715. [PMID: 35629138 PMCID: PMC9147761 DOI: 10.3390/jpm12050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
The use of biomarkers in cancer diagnosis, therapy, and prognosis has been highly effective over several decades. Studies of biomarkers in cancer patients pre- and post-treatment and during cancer progression have helped identify cancer stem cells (CSCs) and their related microenvironments. These analyses are critical for the therapeutic application of drugs and the efficient targeting and prevention of cancer progression, as well as the investigation of the mechanism of the cancer development. Biomarkers that characterize CSCs have thus been identified and correlated to diagnosis, therapy, and prognosis. However, CSCs demonstrate elevated levels of plasticity, which alters their functional phenotype and appearance by interacting with their microenvironments, in response to chemotherapy and radiotherapeutics. In turn, these changes induce different metabolic adaptations of CSCs. This article provides a review of the most frequently used CSCs and stem cell markers.
Collapse
Affiliation(s)
- Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita 329-1571, Japan
- Horus Co., Ltd., Nakano, Tokyo 164-0001, Japan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.); (J.-B.P.); (C.-S.L.)
| | - Ying-Chu Lin
- School of Dentistry, Department of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| |
Collapse
|
2
|
Oliemuller E, Newman R, Howard BA. Intraductal Injections into the Mouse Mammary Gland. Methods Mol Biol 2022; 2471:221-233. [PMID: 35175600 DOI: 10.1007/978-1-0716-2193-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mammary intraductal xenografting technique has been established to inject cells or other substances directly into the mammary ducts of female mice. Using this refined xenografting method provides the possibility of mimicking the normal microenvironment of preinvasive breast lesions including, ductal carcinoma in situ (DCIS), to study of the progression of DCIS to invasive breast cancer in a more relevant manner than with other mammary xenografting methods. Xenografting into the mammary fat pad delivers cells directly into the stroma and bypasses the occurrence of invasive transition, during which cells invade through the basement membrane. Either breast cancer cell lines or patient-derived breast cancer cells can be injected into the mammary duct using this protocol to model breast cancer progression. This protocol will cover the procedures required to perform this technique.
Collapse
Affiliation(s)
- Erik Oliemuller
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Richard Newman
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
3
|
Jimenez-Rojo L, Pagella P, Harada H, Mitsiadis TA. Dental Epithelial Stem Cells as a Source for Mammary Gland Regeneration and Milk Producing Cells In Vivo. Cells 2019; 8:cells8101302. [PMID: 31652655 PMCID: PMC6830078 DOI: 10.3390/cells8101302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The continuous growth of rodent incisors is ensured by clusters of mesenchymal and epithelial stem cells that are located at the posterior part of these teeth. Genetic lineage tracing studies have shown that dental epithelial stem cells (DESCs) are able to generate all epithelial cell populations within incisors during homeostasis. However, it remains unclear whether these cells have the ability to adopt alternative fates in response to extrinsic factors. Here, we have studied the plasticity of DESCs in the context of mammary gland regeneration. Transplantation of DESCs together with mammary epithelial cells into the mammary stroma resulted in the formation of chimeric ductal epithelial structures in which DESCs adopted all the possible mammary fates including milk-producing alveolar cells. In addition, when transplanted without mammary epithelial cells, DESCs developed branching rudiments and cysts. These in vivo findings demonstrate that when outside their niche, DESCs redirect their fates according to their new microenvironment and thus can contribute to the regeneration of non-dental tissues.
Collapse
Affiliation(s)
- Lucia Jimenez-Rojo
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | - Pierfrancesco Pagella
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University Yahaba, Morioka 020-0023, Japan.
| | - Thimios A Mitsiadis
- Department of Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland.
| |
Collapse
|
4
|
Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, Sachs PC, Bruno RD. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater 2019; 95:201-213. [PMID: 31233891 DOI: 10.1016/j.actbio.2019.06.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022]
Abstract
The extracellular matrix (ECM) of tissues is an important mediator of cell function. Moreover, understanding cellular dynamics within their specific tissue context is also important for developmental biology, cancer research, and regenerative medicine. However, robust in vitro models that incorporate tissue-specific microenvironments are lacking. Here we describe a novel mammary-specific culture protocol that combines a self-gelling hydrogel comprised solely of ECM from decellularized rat or human breast tissue with the use of our previously described 3D bioprinting platform. We initially demonstrate that undigested and decellularized mammary tissue can support mammary epithelial and tumor cell growth. We then describe a methodology for generating mammary ECM extracts that can spontaneously gel to form hydrogels. These ECM hydrogels retain unique structural and signaling profiles that elicit differential responses when normal mammary and breast cancer cells are cultured within them. Using our bioprinter, we establish that we can generate large organoids/tumoroids in the all mammary-derived hydrogel. These findings demonstrate that our system allows for growth of organoids/tumoroids in a tissue-specific matrix with unique properties, thus providing a suitable platform for ECM and epithelial/cancer cell studies. STATEMENT OF SIGNIFICANCE: Factors within extracellular matrices (ECMs) are specific to their tissue of origin. It has been shown that tissue specific factors within the mammary gland's ECM have pronounced effects on cellular differentiation and cancer behavior. Understanding the role of the ECM in controlling cell fate has major implications for developmental biology, tissue engineering, and cancer therapy. However, in vitro models to study cellular interactions with tissue specific ECM are lacking. Here we describe the generation of 3D hydrogels consisting solely of human or mouse mammary ECM. We demonstrate that these novel 3D culture substrates can sustain large 3D bioprinted organoid and tumoroid formation. This is the first demonstration of an all mammary ECM culture system capable of sustaining large structural growths.
Collapse
|
5
|
Saito S, Lin YC, Nakamura Y, Eckner R, Wuputra K, Kuo KK, Lin CS, Yokoyama KK. Potential application of cell reprogramming techniques for cancer research. Cell Mol Life Sci 2019; 76:45-65. [PMID: 30283976 PMCID: PMC6326983 DOI: 10.1007/s00018-018-2924-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
Abstract
The ability to control the transition from an undifferentiated stem cell to a specific cell fate is one of the key techniques that are required for the application of interventional technologies to regenerative medicine and the treatment of tumors and metastases and of neurodegenerative diseases. Reprogramming technologies, which include somatic cell nuclear transfer, induced pluripotent stem cells, and the direct reprogramming of specific cell lineages, have the potential to alter cell plasticity in translational medicine for cancer treatment. The characterization of cancer stem cells (CSCs), the identification of oncogene and tumor suppressor genes for CSCs, and the epigenetic study of CSCs and their microenvironments are important topics. This review summarizes the application of cell reprogramming technologies to cancer modeling and treatment and discusses possible obstacles, such as genetic and epigenetic alterations in cancer cells, as well as the strategies that can be used to overcome these obstacles to cancer research.
Collapse
Affiliation(s)
- Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan
- College of Engineering, Nihon University, Koriyama, Fukushima, 963-8642, Japan
| | - Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Richard Eckner
- Department of Biochemistry and Molecular Biology, Rutgers, New Jersey Medical School-Rutgers, The State University of New Jersey, Newark, NJ, 07101, USA
| | - Kenly Wuputra
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Faculty of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Boulanger CA, Rosenfield SM, George AL, Smith GH. Hormone signaling requirements for the conversion of non-mammary mouse cells to mammary cell fate(s) in vivo. J Mammary Gland Biol Neoplasia 2015; 20:93-101. [PMID: 26362796 PMCID: PMC4595519 DOI: 10.1007/s10911-015-9343-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022] Open
Abstract
Mammotropic hormones and growth factors play a very important role in mammary growth and differentiation. Here, hormones including Estrogen, Progesterone, Prolactin, their cognate receptors, and the growth factor Amphiregulin, are tested with respect to their roles in signaling non-mammary cells from the mouse to redirect to mammary epithelial cell fate(s). This was done in the context of glandular regeneration in pubertal athymic female mice. Our previous studies demonstrated that mammary stem cell niches are recapitulated during gland regeneration in vivo. During this process, cells of exogenous origin cooperate with mammary epithelial cells to form mammary stem cell niches and thus respond to normal developmental signals. In all cases tested with the possible exception of estrogen receptor alpha (ER-α), hormone signaling is dispensable for non-mammary cells to undertake mammary epithelial cell fate(s), proliferate, and contribute progeny to chimeric mammary outgrowths. Importantly, redirected non-mammary cell progeny, regardless of their source, have the ability to self-renew and contribute offspring to secondary mammary outgrowths derived from transplanted chimeric mammary fragments; thus suggesting that some of these cells are capable of mammary stem cell/progenitor functions.
Collapse
Affiliation(s)
- Corinne A Boulanger
- Mammary Stem Cell Biology Section, BRL, CCR, NCI, Bldg. 37 Rm. 1122A, Bethesda, MD, 20892, USA
| | - Sonia M Rosenfield
- Mammary Stem Cell Biology Section, BRL, CCR, NCI, Bldg. 37 Rm. 1122A, Bethesda, MD, 20892, USA
| | - Andrea L George
- Mammary Stem Cell Biology Section, BRL, CCR, NCI, Bldg. 37 Rm. 1122A, Bethesda, MD, 20892, USA
| | - Gilbert H Smith
- Mammary Stem Cell Biology Section, BRL, CCR, NCI, Bldg. 37 Rm. 1122A, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Peng Z, Liu L, Wei X, Ling J. Expression of Oct-4, SOX-2, and MYC in dental papilla cells and dental follicle cells during in-vivo tooth development and in-vitro co-culture. Eur J Oral Sci 2015; 122:251-8. [PMID: 25039286 DOI: 10.1111/eos.12141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2014] [Indexed: 01/06/2023]
Abstract
During tooth development, the special structure of dental follicle and dental papilla enables dental papilla cells (DPCs) and dental follicle cells (DFCs) to make contact with each other. Octamer-binding transcription factor 4 (Oct-4), sex determining region Y box-2 (SOX-2), and cellular homologue of avian myelocytomatosis virus oncogene (MYC) (OSM) are associated with reprogramming and pluripotency. However, whether the expression of OSM could be activated through cell-cell communication is not known. In this study, the distribution of OSM in rat tooth germ was investigated by immunohistochemical staining. An in-vitro co-culture system of DPCs and DFCs was established. Cell proliferation, cell apoptosis, cell cycle stages, and expression of OSM were investigated by Cell Counting Kit 8 (CCK8) analysis, flow cytometry, real-time PCR, and immunohistochemical staining. We found that Oct-4 and SOX-2 were strongly expressed in tooth germ on days 7 and 9 after birth, whereas MYC was expressed only on day 9. Cell proliferation and apoptosis were inhibited, the cell cycle was arrested in the G0/G1 phase, and the propidium iodide (PI) value was downregulated. Expression of Oct-4 and SOX-2 was significantly elevated in both cell types after 3 d of co-culture, whereas expression of MYC was not significantly elevated until day 5. These results indicate that the optimized microenvironment with cell-cell communication enhanced the expression of reprogramming markers associated with reprogramming capacity in DPCs and DFCs, both in vivo and in vitro.
Collapse
Affiliation(s)
- Zhengjun Peng
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology Guangzhou, Sun Yat-Sen University, Guangdong, China
| | | | | | | |
Collapse
|
8
|
Duss S, Brinkhaus H, Britschgi A, Cabuy E, Frey DM, Schaefer DJ, Bentires-Alj M. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells. Breast Cancer Res 2014; 16:R60. [PMID: 24916766 PMCID: PMC4095576 DOI: 10.1186/bcr3673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 05/22/2014] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. METHODS We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. RESULTS We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. CONCLUSIONS The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer.
Collapse
Affiliation(s)
- Stephan Duss
- Friedrich Miescher Institute for Biomedical Research, Mechanisms of Cancer, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Heike Brinkhaus
- Friedrich Miescher Institute for Biomedical Research, Mechanisms of Cancer, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Adrian Britschgi
- Friedrich Miescher Institute for Biomedical Research, Mechanisms of Cancer, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Erik Cabuy
- Friedrich Miescher Institute for Biomedical Research, Mechanisms of Cancer, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Daniel M Frey
- Department of Surgery, University Hospital of Basel, Spitalstrasse 21, CH-4058 Basel, Switzerland
| | - Dirk J Schaefer
- Department of Surgery, University Hospital of Basel, Spitalstrasse 21, CH-4058 Basel, Switzerland
| | - Mohamed Bentires-Alj
- Friedrich Miescher Institute for Biomedical Research, Mechanisms of Cancer, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
9
|
Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment. Cells 2013; 2:43-56. [PMID: 24709643 PMCID: PMC3972660 DOI: 10.3390/cells2010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/24/2012] [Accepted: 01/08/2013] [Indexed: 11/29/2022] Open
Abstract
Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary gland is capable of redirecting mouse cells of non-mammary origins as well as Mouse Mammary Tumor Virus (MMTV)-neu transformed cells toward normal mammary epithelial cell fate during gland regeneration. Interestingly, the malignant phenotype of MMTV-neu transformed cells was suppressed during serial transplantation experiments. Here, we discuss our studies that demonstrated the potential of the regenerating mouse mammary gland to redirect cancer cells of different species into a functional tumor-free mammary epithelial cell progeny. Immunochemistry for human specific CD133, mitochondria, cytokeratins as well as milk proteins and FISH for human specific probe identified human epithelial cell progeny in ducts, lobules, and secretory acini. Fluorescent In Situ Hybridization (FISH) for human centromeric DNA and FACS analysis of propidium iodine staining excluded the possibility of mouse-human cell fusion. To our knowledge this is the first evidence that human cancer cells of embryonic or somatic origins respond to developmental signals generated by the mouse mammary gland microenvironment during gland regeneration in vivo.
Collapse
|
10
|
Abstract
Mammary glands are crucial to the reproductive strategy of mammals, and the milk of domesticated ruminants serves as an important source of nutrients for the human population. The majority of mammary gland development occurs postnatally, and the mammary gland undergoes cyclical periods of growth, differentiation, lactation, and regression that are coordinated to provide nutrients for offspring or are driven by strategies to manage reproduction and milk production of domesticated species. Growth and maintenance of the mammary epithelium depends on the function of mammary stem cells and progenitor cells. In this review, we provide an overview of postnatal mammary gland development, cyclical phases of mammary gland regression (regression during lactation and between successive lactations), and mammary stem cells and progenitor cells. Where possible, these processes are related to animal production and compared across species, particularly bovine, porcine, murine, and human.
Collapse
Affiliation(s)
- Anthony V Capuco
- Bovine Functional Genomics Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705;
| | | |
Collapse
|
11
|
Chen L, Kasai T, Li Y, Sugii Y, Jin G, Okada M, Vaidyanath A, Mizutani A, Satoh A, Kudoh T, Hendrix MJC, Salomon DS, Fu L, Seno M. A model of cancer stem cells derived from mouse induced pluripotent stem cells. PLoS One 2012; 7:e33544. [PMID: 22511923 PMCID: PMC3325228 DOI: 10.1371/journal.pone.0033544] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/10/2012] [Indexed: 01/28/2023] Open
Abstract
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5'-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model.
Collapse
Affiliation(s)
- Ling Chen
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, People's Republic of China
| | - Tomonari Kasai
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yueguang Li
- Department of General Surgery, Tianjin 4th Centre Hospital, Tianjin, People's Republic of China
| | - Yuh Sugii
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Guoliang Jin
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Masashi Okada
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Arun Vaidyanath
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Akifumi Mizutani
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Ayano Satoh
- Multidisciplinary Division, Okayama University, Okayama, Japan
| | - Takayuki Kudoh
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mary J. C. Hendrix
- Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - David S. Salomon
- Laboratory of Mammary Biology and Tumorigenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Li Fu
- State Key Laboratory of Breast Cancer Research, Department of Breast Cancer Pathology and Research Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- * E-mail: (MS); (LF)
| | - Masaharu Seno
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail: (MS); (LF)
| |
Collapse
|
12
|
Abstract
Any portion of the mouse mammary gland is capable of recapitulating a clonally derived complete and functional mammary tree upon transplantation into an epithelial divested mammary fat-pad of a recipient host. As such, it is an ideal model tissue for the study somatic stem cell function. This review will outline what is known regarding the function of stem/progenitor cells in the mouse mammary gland, including how progenitor populations can be functionally defined, the evidence for and potential role of selective DNA strand segregation, and the role of the niche in maintaining and controlling stem cell function.
Collapse
Affiliation(s)
- Robert D. Bruno
- Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Gilbert H. Smith
- Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
König A, Yatsenko AS, Weiss M, Shcherbata HR. Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation. EMBO J 2011; 30:1549-62. [PMID: 21423150 PMCID: PMC3102283 DOI: 10.1038/emboj.2011.73] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/22/2011] [Indexed: 01/13/2023] Open
Abstract
Previously, it has been shown that in Drosophila steroid hormones are required for progression of oogenesis during late stages of egg maturation. Here, we show that ecdysteroids regulate progression through the early steps of germ cell lineage. Upon ecdysone signalling deficit germline stem cell progeny delay to switch on a differentiation programme. This differentiation impediment is associated with reduced TGF-β signalling in the germline and increased levels of cell adhesion complexes and cytoskeletal proteins in somatic escort cells. A co-activator of the ecdysone receptor, Taiman is the spatially restricted regulator of the ecdysone signalling pathway in soma. Additionally, when ecdysone signalling is perturbed during the process of somatic stem cell niche establishment enlarged functional niches able to host additional stem cells are formed.
Collapse
Affiliation(s)
- Annekatrin König
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
14
|
Vik-Mo EO, Sandberg C, Joel M, Stangeland B, Watanabe Y, Mackay-Sim A, Moe MC, Murrell W, Langmoen IA. A comparative study of the structural organization of spheres derived from the adult human subventricular zone and glioblastoma biopsies. Exp Cell Res 2011; 317:1049-59. [PMID: 21199649 DOI: 10.1016/j.yexcr.2010.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/02/2010] [Accepted: 12/24/2010] [Indexed: 01/01/2023]
Abstract
Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.
Collapse
Affiliation(s)
- Einar Osland Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Survival and engraftment of mouse embryonic stem cells in the mammary gland. In Vitro Cell Dev Biol Anim 2010; 47:188-94. [PMID: 21136192 DOI: 10.1007/s11626-010-9376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Embryonic stem (ES) cells have been investigated in many animal models of severe injury and degenerative disease. However, few studies have examined the ability of ES cells to improve functional outcome following mammary gland injury. This study investigates the feasibility of implanting mouse ES cells labeled with enhanced green fluorescence protein in the developing mammary glands in order to acquire lineage-committed cells in mammary (mammary gland epithelial cell or luminal cell). Cells implanted in high numbers (5 × 10(6) cells per mammary gland) survived in the majority of the mice and nearly 38.4% of the surviving cells were CK18(+) at 15th week following the transplantation. Our results may provide a technique instrument on advanced therapy of breast diseases and the mammary regeneration after breast ablated partly.
Collapse
|
16
|
McCave EJ, Cass CAP, Burg KJL, Booth BW. The normal microenvironment directs mammary gland development. J Mammary Gland Biol Neoplasia 2010; 15:291-9. [PMID: 20824492 DOI: 10.1007/s10911-010-9190-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/23/2010] [Indexed: 11/29/2022] Open
Abstract
Normal development of the mammary gland is a multidimensional process that is controlled in part by its mammary microenvironment. The mammary microenvironment is a defined location that encompasses mammary somatic stem cells, neighboring signaling cells, the basement membrane and extracellular matrix, mammary fibroblasts as well as the intercellular signals produced and received by these cells. These dynamic signals take numerous forms including growth factors, steroids, cell-cell or cell-basement membrane physical interactions. Cellular growth and differentiation of the mammary gland throughout the developmental stages are regulated by changes in these signals and interactions. The purpose of this review is to summarize current information and research regarding the role of the mammary microenvironment during normal glandular development.
Collapse
Affiliation(s)
- Erin J McCave
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
17
|
Colitti M. Expression of putative stem cell markers related to developmental stage of sheep mammary glands. Anat Histol Embryol 2010; 39:555-62. [PMID: 20809917 DOI: 10.1111/j.1439-0264.2010.01028.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is thought that the regenerative capacity of the mammary gland following post-lactation involution resides in multipotent stem cells within the luminal tissue. Adult stem cells make up a small percentage of the cells found in mature organ systems, however to define useful markers has long been a challenge. c-Kit (KIT) and its ligand stem cell factor (KITLG), ATP-binding cassette sub-family G member 2 (ABCG2) and Musashi 1 (MSI1) are good candidate to identify progenitor cells in their niche. Using real-time PCR we showed that KIT, KITLG and MSI1 expressions were up regulated before lambing and at involution relatively to prepubertal stage. The in situ hybridization analysis for KIT gene confirmed and localized the expression in luminal epithelial cells. The changes in the expression profile of putative stem cell markers in mammary glands of sheep suggest that they modify with the progression of lactation cycle, being up regulated during differentiation and down regulated during lactation.
Collapse
Affiliation(s)
- M Colitti
- Department of Scienze Animali, Faculty of Veterinary Medicine, University of Udine, via delle Scienze, 208, 33100 Udine, Italy.
| |
Collapse
|
18
|
Poczobutt JM, Tentler J, Lu X, Schedin PJ, Gutierrez-Hartmann A. Benign mammary epithelial cells enhance the transformed phenotype of human breast cancer cells. BMC Cancer 2010; 10:373. [PMID: 20637104 PMCID: PMC2913961 DOI: 10.1186/1471-2407-10-373] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/16/2010] [Indexed: 02/05/2023] Open
Abstract
Background Recent research has yielded a wealth of data underscoring the key role of the cancer microenvironment, especially immune and stromal cells, in the progression of cancer and the development of metastases. However, the role of adjacent benign epithelial cells, which provide initial cell-cell contacts with cancer cells, in tumor progression has not been thoroughly examined. In this report we addressed the question whether benign MECs alter the transformed phenotype of human breast cancer cells. Methods We used both in vitro and in vivo co-cultivation approaches, whereby we mixed GFP-tagged MCF-10A cells (G2B-10A), as a model of benign mammary epithelial cells (MECs), and RFP-tagged MDA-MB-231-TIAS cells (R2-T1AS), as a model of breast cancer cells. Results The in vitro studies showed that G2B-10A cells increase the colony formation of R2-T1AS cells in both soft agar and clonogenicity assays. Conditioned media derived from G2B-10A cells enhanced colony formation of R2-T1AS cells, whereas prior paraformaldehyde (PFA) fixation of G2B-10A cells abrogated this enhancement effect. Moreover, two other models of benign MECs, MCF-12A and HuMECs, also enhanced R2-T1AS colony growth in soft agar and clonogenicity assays. These data reveal that factors secreted by benign MECs are responsible for the observed enhancement of the R2-T1AS transformed phenotype. To determine whether G2B-10A cells enhance the tumorigenic growth of co-injected R2-T1AS cells in vivo, we used the nude mouse xenograft assay. Co-injecting R2-T1AS cells with G2B-10A cells ± PFA-fixation, revealed that G2B-10A cells promoted a ~3-fold increase in tumor growth, irrespective of PFA pre-treatment. These results indicate that soluble factors secreted by G2B-10A cells play a less important role in promoting R2-T1AS tumorigenesis in vivo, and that additional components are operative in the nude mouse xenograft assay. Finally, using array analysis, we found that both live and PFA-fixed G2B-10A cells induced R2-T1AS cells to secrete specific cytokines (IL-6 and GM-CSF), suggesting that cell-cell contact activates R2-T1AS cells. Conclusions Taken together, these data shift our understanding of adjacent benign epithelial cells in the cancer process, from passive, noncontributory cells to an active and tumor-promoting vicinal cell population that may have significant effects early, when benign cells outnumber malignant cells.
Collapse
Affiliation(s)
- Joanna M Poczobutt
- Molecular Biology Program, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
19
|
Recombinant PBD-1 (porcine beta-defensin 1) expressed in the milk by transplanting transgenic mES-like-derived cells into mouse mammary gland. Cell Biol Int 2010; 34:1033-40. [PMID: 20597860 DOI: 10.1042/cbi20090453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ES (embryonic stem)-derived cells have been investigated in many animal models of severe injury and degenerative disease. However, few studies have examined the ability of ES-derived cells to improve functional outcome following partially damaged breast and also the modification of mammary tissue to produce costly proteins. This study investigates the feasibility of implanting mES-dK (mouse ES-derived keratinocytes-like) cells stably transfected with a mammary gland special expression vector for the PBD-1 (porcine beta-defensin 1) in developing mammary glands. Our aim was to assess the ability of cell grafting to improve functional outcome following partial damage of the breast, also on the breast modification mammary tissue in mice for the production of PBD-1 protein secreted in the milk. Our results showed that the ratios of the surviving cells labelled with the myoepithelial or luminal cell markers, EMA (epithelial membrane antigen) and CALLA, were 41.7 +/- 15.2% and 28.4 +/- 9.6%, respectively, which revealed that transplanted mES-dK cells survived, integrated in vivo and differentiated into myoepithelial or luminal cells. In addition, Western blot analysis showed that 37.5% (3 out of 8) female transplanted mice had PBD-1 expression in their milk and reached 0.4998, 0.5229 and 0.5195 microg/ml, respectively.
Collapse
|
20
|
Groner B, Vafaizadeh V, Brill B, Klemmt P. Stem cells of the breast and cancer therapy. ACTA ACUST UNITED AC 2010; 6:205-19. [PMID: 20187727 DOI: 10.2217/whe.10.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer remains a significant public health problem despite advances in the understanding of the molecular and cellular events that underlie the disease. Crucial pathways regulating the cell cycle, proliferation and survival of breast cancer cells have been investigated and aberrant components of these pathways have been exploited as new drug targets. However, the mortality from breast cancer is only slowly declining. Recently, a model has been proposed that might explain the heterogeneous biological features of breast cancer cell populations and their differential response to therapeutic agents, which has interesting implications for further progress in therapy. This model links the emergence of breast cancer cells to stem cells and progenitors, an observation originally made in other cancer entities. It hypothesizes that the tumors originate from a small population of undifferentiated cells. These cells can undergo self-renewal and are able to generate a large number of partially differentiated cells, which constitute the bulk of the tumor. These cancer stem cells resemble adult stem and progenitor cells found in the normal breast, but are deregulated in their patterns of proliferation and differentiation. They could originate from normal stem cells or from more differentiated progenitors and lose their normal growth restraints through a series of oncogenic mutations that deregulate a small number of central signaling pathways. If breast cancer really is a stem and progenitor cell disease, this will have important implications for the understanding of the emergence of cancer cells. A combination of the cell-type of origin, stem cells, early or late progenitors and the particular oncogenic mutations acquired could provide a new classification of the different types of breast cancer. These parameters might determine the mechanisms of cancer progression and the responsiveness of patients to drug treatment. Stem cell-specific features could possibly be exploited as innovative drug targets.
Collapse
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt, Germany.
| | | | | | | |
Collapse
|
21
|
Jiang S, Lee BC, Fu Y, Avraham S, Lim B, Avraham HK. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation. PLoS One 2010; 5:e9707. [PMID: 20300573 PMCID: PMC2837751 DOI: 10.1371/journal.pone.0009707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/11/2010] [Indexed: 12/01/2022] Open
Abstract
Background Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. Methodology/Principal Findings To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES) cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs) under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. Conclusions/Significance Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.
Collapse
Affiliation(s)
- Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Byeong-Chel Lee
- University of Pittsburgh School of Medicine, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Yigong Fu
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shalom Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bing Lim
- Hematology and Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Hava Karsenty Avraham
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Neville MC. Introduction: transplantation of the normal mammary gland: early evidence for a mammary stem cell. J Mammary Gland Biol Neoplasia 2009; 14:353-4. [PMID: 19653072 DOI: 10.1007/s10911-009-9152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|