1
|
Peng J, Liu H, Liu Y, Liu J, Zhao Q, Liu W, Niu H, Xue H, Sun J, Wu J. HDAC6 mediates tumorigenesis during mitosis and the development of targeted deactivating agents. Bioorg Chem 2024; 153:107818. [PMID: 39288633 DOI: 10.1016/j.bioorg.2024.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown. Herein, we review and summarize HDAC6-associated proteins that have been implicated in important roles in mitosis. We also discuss the development of medicinal agents targeting HDAC6.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan 265400, Shandong Province, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
2
|
The Autism Protein Ube3A/E6AP Remodels Neuronal Dendritic Arborization via Caspase-Dependent Microtubule Destabilization. J Neurosci 2017; 38:363-378. [PMID: 29175955 DOI: 10.1523/jneurosci.1511-17.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 02/01/2023] Open
Abstract
UBE3A gene copy number variation and the resulting overexpression of the protein E6AP is directly linked to autism spectrum disorders (ASDs). However, the underlying cellular and molecular neurobiology remains less clear. Here we report the role of ASD-related increased dosage of Ube3A/E6AP in dendritic arborization during brain development. We show that increased E6AP expression in primary cultured neurons leads to a reduction in dendritic branch number and length. The E6AP-dependent remodeling of dendritic arborization results from retraction of dendrites by thinning and fragmentation at the tips of dendrite branches, leading to shortening or removal of dendrites. This remodeling effect is mediated by the ubiquitination and degradation of XIAP (X-linked inhibitors of aptosis protein) by E6AP, which leads to activation of caspase-3 and cleavage of microtubules. In vivo, male and female Ube3A 2X ASD mice show decreased XIAP levels, increased caspase-3 activation, and elevated levels of tubulin cleavage. Consistently, dendritic branching and spine density are reduced in cortical neurons of Ube3A 2X ASD mice. In revealing an important role for Ube3A/E6AP in ASD-related developmental alteration in dendritic arborization and synapse formation, our findings provide new insights into the pathogenesis of Ube3A/E6AP-dependent ASD.SIGNIFICANCE STATEMENT Copy number variation of the UBE3A gene and aberrant overexpression of the gene product E6AP protein is a common cause of autism spectrum disorders (ASDs). During brain development, dendritic growth and remodeling play crucial roles in neuronal connectivity and information integration. We found that in primary neurons and in Ube3A transgenic autism mouse brain, overexpression of E6AP leads to significant loss of dendritic arborization. This effect is mediated by the ubiquitination of XIAP (X-linked inhibitor of aptosis protein) by E6AP, subsequent activation of caspases, and the eventual cleavage of microtubules, leading to local degeneration and retraction at the tips of dendritic branches. These findings demonstrate dysregulation in neuronal structural stability as a major cellular neuropathology in ASD.
Collapse
|
3
|
Vora SM, Phillips BT. The benefits of local depletion: The centrosome as a scaffold for ubiquitin-proteasome-mediated degradation. Cell Cycle 2016; 15:2124-2134. [PMID: 27294844 DOI: 10.1080/15384101.2016.1196306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The centrosome is the major microtubule-organizing center in animal cells but is dispensable for proper microtubule spindle formation in many biological contexts and is thus thought to fulfill additional functions. Recent observations suggest that the centrosome acts as a scaffold for proteasomal degradation in the cell to regulate a variety of biological processes including cell fate acquisition, cell cycle control, stress response, and cell morphogenesis. Here, we review the body of studies indicating a role for the centrosome in promoting proteasomal degradation of ubiquitin-proteasome substrates and explore the functional relevance of this system in different biological contexts. We discuss a potential role for the centrosome in coordinating local degradation of proteasomal substrates, allowing cells to achieve stringent spatiotemporal control over various signaling processes.
Collapse
Affiliation(s)
- Setu M Vora
- a Department of Biological Sciences, University of Iowa , Iowa City , IA , USA
| | - Bryan T Phillips
- a Department of Biological Sciences, University of Iowa , Iowa City , IA , USA
| |
Collapse
|
4
|
Bajic V, Spremo-Potparevic B, Zivkovic L, Isenovic ER, Arendt T. Cohesion and the aneuploid phenotype in Alzheimer's disease: A tale of genome instability. Neurosci Biobehav Rev 2015; 55:365-74. [PMID: 26003528 DOI: 10.1016/j.neubiorev.2015.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 03/26/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Neurons are postmitotic cells that are in permanent cell cycle arrest. However, components of the cell cycle machinery that are expressed in Alzheimer's disease (AD) neurons are showing features of a cycling cell and those attributed to a postmitotic cell as well. Furthermore, the unique physiological operations taking place in neurons, ascribed to "core cell cycle regulators" are also key regulators in cell division. Functions of these cell cycle regulators include neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. In this review, we focus on cohesion and cohesion related proteins in reference to their neuronal functions and how impaired centromere/cohesion dynamics may connect cell cycle dysfunction to aneuploidy in AD.
Collapse
Affiliation(s)
- Vladan Bajic
- Institute for Nuclear Research "Vinca", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, P.O. 522, 11001 Belgrade, Serbia.
| | - Biljana Spremo-Potparevic
- Faculty of Pharmacy, Institute of Physiology, Department of Biology and Human Genetics, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Lada Zivkovic
- Faculty of Pharmacy, Institute of Physiology, Department of Biology and Human Genetics, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Esma R Isenovic
- Institute for Nuclear Research "Vinca", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, P.O. 522, 11001 Belgrade, Serbia.
| | - Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, School of Medicine, Leipzig, Germany.
| |
Collapse
|
5
|
Abstract
The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
6
|
Heyman J, De Veylder L. The anaphase-promoting complex/cyclosome in control of plant development. MOLECULAR PLANT 2012; 5:1182-94. [PMID: 23034505 DOI: 10.1093/mp/sss094] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. In light of the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. However, whereas the APC/C has been studied extensively in yeast and mammals, only in the last decade has the plant APC/C started to unveil its secrets. Research results have shown the importance of the APC/C core complex and its activators during gametogenesis, growth, hormone signaling, symbiotic interactions, and endoreduplication onset. In addition, recently, the first plant APC/C inhibitors have been reported, allowing a fine-tuning of APC/C activity during the cell cycle. Together with the identification of the first APC/C targets, a picture emerges of APC/C activity being essential for many different developmental processes.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | |
Collapse
|
7
|
Mishra M, Lee S, Lin MK, Yamashita T, Heese K. Characterizing the neurite outgrowth inhibitory effect of Mani. FEBS Lett 2012; 586:3018-23. [DOI: 10.1016/j.febslet.2012.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/01/2022]
|
8
|
Meng X, Tian X, Wang X, Gao P, Zhang C. A novel binding protein of single-minded 2: the mitotic arrest-deficient protein MAD2B. Neurogenetics 2012; 13:251-60. [DOI: 10.1007/s10048-012-0333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
|
9
|
Puram SV, Bonni A. Novel functions for the anaphase-promoting complex in neurobiology. Semin Cell Dev Biol 2011; 22:586-94. [PMID: 21439392 PMCID: PMC3177029 DOI: 10.1016/j.semcdb.2011.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/16/2011] [Indexed: 11/21/2022]
Abstract
In recent years, diverse and unexpected neurobiological functions have been uncovered for the major cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex (APC). Functions of the APC in the nervous system range from orchestrating neuronal morphogenesis and synapse development to the regulation of neuronal differentiation, survival, and metabolism. The APC acts together with the coactivating proteins Cdh1 and Cdc20 in neural cells to target specific substrates for ubiquitination and consequent degradation by the proteasome. As we continue to unravel APC functions and mechanisms in neurobiology, these studies should advance our understanding of the molecular mechanisms of neuronal connectivity, with important implications for the study of brain development and disease.
Collapse
Affiliation(s)
- Sidharth V. Puram
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
10
|
Buttitta LA, Katzaroff AJ, Edgar BA. A robust cell cycle control mechanism limits E2F-induced proliferation of terminally differentiated cells in vivo. J Cell Biol 2010; 189:981-96. [PMID: 20548101 PMCID: PMC2886355 DOI: 10.1083/jcb.200910006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 05/12/2010] [Indexed: 11/29/2022] Open
Abstract
Terminally differentiated cells in Drosophila melanogaster wings and eyes are largely resistant to proliferation upon deregulation of either E2F or cyclin E (CycE), but exogenous expression of both factors together can bypass cell cycle exit. In this study, we show this is the result of cooperation of cell cycle control mechanisms that limit E2F-CycE positive feedback and prevent cycling after terminal differentiation. Aberrant CycE activity after differentiation leads to the degradation of E2F activator complexes, which increases the proportion of CycE-resistant E2F repressor complexes, resulting in stable E2F target gene repression. If E2F-dependent repression is lost after differentiation, high anaphase-promoting complex/cyclosome (APC/C) activity degrades key E2F targets to limit cell cycle reentry. Providing both CycE and E2F activities bypasses exit by simultaneously inhibiting the APC/C and inducing a group of E2F target genes essential for cell cycle reentry after differentiation. These mechanisms are essential for proper development, as evading them leads to tissue outgrowths composed of dividing but terminally differentiated cells.
Collapse
Affiliation(s)
| | - Alexia J. Katzaroff
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Bruce A. Edgar
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Deutsches Krebsforschungszentrum–Zentrum für Molekulare Biologie der Universität Heidelberg Allianz, D-69120 Heidelberg, Germany
| |
Collapse
|