1
|
Nguyen NH, Sheng S, Banerjee A, Guerriero CJ, Chen J, Wang X, Mackie TD, Welling PA, Kleyman TR, Bahar I, Carlson AE, Brodsky JL. Characterization of hyperactive mutations in the renal potassium channel ROMK uncovers unique effects on channel biogenesis and ion conductance. Mol Biol Cell 2024; 35:ar119. [PMID: 39024255 PMCID: PMC11449386 DOI: 10.1091/mbc.e23-12-0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Shaohu Sheng
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | | | - Jingxin Chen
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Xueqi Wang
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Timothy D. Mackie
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Paul A. Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, School of Medicine, University of Pittsburgh, PA 15260
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA 15260
| | - Anne E. Carlson
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, School of Medicine, University of Pittsburgh, PA 15260
| |
Collapse
|
2
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Durrant JD, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields putative disease-associated ROMK variants with distinct defects. PLoS Genet 2023; 19:e1011051. [PMID: 37956218 PMCID: PMC10695394 DOI: 10.1371/journal.pgen.1011051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal, and there is currently no cure. Bartter syndrome type II specifically arises from mutations in KCNJ1, which encodes the renal outer medullary potassium channel, ROMK. Over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified, yet their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined genomic data in both the NIH TOPMed and ClinVar databases with the aid of Rhapsody, a verified computational algorithm that predicts mutation pathogenicity and disease severity. Subsequent phenotypic studies using a yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced cell surface expression. Another mutation (T300R) was ERAD-resistant, but defects in channel activity were apparent based on two-electrode voltage clamp measurements in X. laevis oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies to advance precision medicine.
Collapse
Affiliation(s)
- Nga H. Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Srikant Sarangi
- Paradigm4, Inc., Waltham, Massachusetts, United States of America
| | - Erin M. McChesney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shaohu Sheng
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob D. Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aidan W. Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Nguyen NH, Sarangi S, McChesney EM, Sheng S, Porter AW, Kleyman TR, Pitluk ZW, Brodsky JL. Genome mining yields new disease-associated ROMK variants with distinct defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539609. [PMID: 37214976 PMCID: PMC10197530 DOI: 10.1101/2023.05.05.539609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bartter syndrome is a group of rare genetic disorders that compromise kidney function by impairing electrolyte reabsorption. Left untreated, the resulting hyponatremia, hypokalemia, and dehydration can be fatal. Although there is no cure for this disease, specific genes that lead to different Bartter syndrome subtypes have been identified. Bartter syndrome type II specifically arises from mutations in the KCNJ1 gene, which encodes the renal outer medullary potassium channel, ROMK. To date, over 40 Bartter syndrome-associated mutations in KCNJ1 have been identified. Yet, their molecular defects are mostly uncharacterized. Nevertheless, a subset of disease-linked mutations compromise ROMK folding in the endoplasmic reticulum (ER), which in turn results in premature degradation via the ER associated degradation (ERAD) pathway. To identify uncharacterized human variants that might similarly lead to premature degradation and thus disease, we mined three genomic databases. First, phenotypic data in the UK Biobank were analyzed using a recently developed computational platform to identify individuals carrying KCNJ1 variants with clinical features consistent with Bartter syndrome type II. In parallel, we examined ROMK genomic data in both the NIH TOPMed and ClinVar databases with the aid of a computational algorithm that predicts protein misfolding and disease severity. Subsequent phenotypic studies using a high throughput yeast screen to assess ROMK function-and analyses of ROMK biogenesis in yeast and human cells-identified four previously uncharacterized mutations. Among these, one mutation uncovered from the two parallel approaches (G228E) destabilized ROMK and targeted it for ERAD, resulting in reduced protein expression at the cell surface. Another ERAD-targeted ROMK mutant (L320P) was found in only one of the screens. In contrast, another mutation (T300R) was ERAD-resistant, but defects in ROMK activity were apparent after expression and two-electrode voltage clamp measurements in Xenopus oocytes. Together, our results outline a new computational and experimental pipeline that can be applied to identify disease-associated alleles linked to a range of other potassium channels, and further our understanding of the ROMK structure-function relationship that may aid future therapeutic strategies. Author Summary Bartter syndrome is a rare genetic disorder characterized by defective renal electrolyte handing, leading to debilitating symptoms and, in some patients, death in infancy. Currently, there is no cure for this disease. Bartter syndrome is divided into five types based on the causative gene. Bartter syndrome type II results from genetic variants in the gene encoding the ROMK protein, which is expressed in the kidney and assists in regulating sodium, potassium, and water homeostasis. Prior work established that some disease-associated ROMK mutants misfold and are destroyed soon after their synthesis in the endoplasmic reticulum (ER). Because a growing number of drugs have been identified that correct defective protein folding, we wished to identify an expanded cohort of similarly misshapen and unstable disease-associated ROMK variants. To this end, we developed a pipeline that employs computational analyses of human genome databases with genetic and biochemical assays. Next, we both confirmed the identity of known variants and uncovered previously uncharacterized ROMK variants associated with Bartter syndrome type II. Further analyses indicated that select mutants are targeted for ER-associated degradation, while another mutant compromises ROMK function. This work sets-the-stage for continued mining for ROMK loss of function alleles as well as other potassium channels, and positions select Bartter syndrome mutations for correction using emerging pharmaceuticals.
Collapse
|
4
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
5
|
Ponzoni L, Nguyen NH, Bahar I, Brodsky JL. Complementary computational and experimental evaluation of missense variants in the ROMK potassium channel. PLoS Comput Biol 2020; 16:e1007749. [PMID: 32251469 PMCID: PMC7162551 DOI: 10.1371/journal.pcbi.1007749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/16/2020] [Accepted: 02/25/2020] [Indexed: 02/02/2023] Open
Abstract
The renal outer medullary potassium (ROMK) channel is essential for potassium transport in the kidney, and its dysfunction is associated with a salt-wasting disorder known as Bartter syndrome. Despite its physiological significance, we lack a mechanistic understanding of the molecular defects in ROMK underlying most Bartter syndrome-associated mutations. To this end, we employed a ROMK-dependent yeast growth assay and tested single amino acid variants selected by a series of computational tools representative of different approaches to predict each variants’ pathogenicity. In one approach, we used in silico saturation mutagenesis, i.e. the scanning of all possible single amino acid substitutions at all sequence positions to estimate their impact on function, and then employed a new machine learning classifier known as Rhapsody. We also used two additional tools, EVmutation and Polyphen-2, which permitted us to make consensus predictions on the pathogenicity of single amino acid variants in ROMK. Experimental tests performed for selected mutants in different classes validated the vast majority of our predictions and provided insights into variants implicated in ROMK dysfunction. On a broader scope, our analysis suggests that consolidation of data from complementary computational approaches provides an improved and facile method to predict the severity of an amino acid substitution and may help accelerate the identification of disease-causing mutations in any protein. As the number of sequenced human genomes rises, a major challenge is to identify which single amino acid variations in a protein affect function and predispose individuals to disease. While predictive algorithms are available for this purpose, a comparative analysis of recently developed algorithms has not been adequately performed, nor is it clear whether combining algorithms would improve predictive power. To this end, we compared the efficacy of three publicly available algorithms and applied the results to Bartter syndrome, a human disease for which numerous poorly-characterized single amino acid variants have been identified and for which there is no cure. In silico saturation mutagenesis, i.e., the computational prediction of pathogenesis for every possible amino acid substitution, allowed us to experimentally test predictions by measuring the activity of an ion channel linked to Bartter syndrome. Based on data from blinded experiments, we discovered that Rhapsody and EVmutation successfully predicted deleterious mutations. Moreover, Rhapsody—which takes into account evolutionary as well as structural and dynamic considerations—predicted that >90% of known Bartter syndrome mutations are deleterious. Overall, our data will aid investigators who wish to test single amino acid variants in any protein and aid biomedical researchers who wish to develop hypotheses on the potential severity of genetic variants uncovered from genome databases.
Collapse
Affiliation(s)
- Luca Ponzoni
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nga H. Nguyen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (IB); (JLB)
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (IB); (JLB)
| |
Collapse
|
6
|
Mackie TD, Brodsky JL. Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox. Genetics 2018; 209:637-650. [PMID: 29967058 PMCID: PMC6028241 DOI: 10.1534/genetics.118.301026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Like all species, the model eukaryote Saccharomyces cerevisiae, or Bakers' yeast, concentrates potassium in the cytosol as an electrogenic osmolyte and enzyme cofactor. Yeast are capable of robust growth on a wide variety of potassium concentrations, ranging from 10 µM to 2.5 M, due to the presence of a high-affinity potassium uptake system and a battery of cation exchange transporters. Genetic perturbation of either of these systems retards yeast growth on low or high potassium, respectively. However, these potassium-sensitized yeast are a powerful genetic tool, which has been leveraged for diverse studies. Notably, the potassium-sensitive cells can be transformed with plasmids encoding potassium channels from bacteria, plants, or mammals, and subsequent changes in growth rate have been found to correlate with the activity of the introduced potassium channel. Discoveries arising from the use of this assay over the past three decades have increased our understanding of the structure-function relationships of various potassium channels, the mechanisms underlying the regulation of potassium channel function and trafficking, and the chemical basis of potassium channel modulation. In this article, we provide an overview of the major genetic tools used to study potassium channels in S. cerevisiae, a survey of seminal studies utilizing these tools, and a prospective for the future use of this elegant genetic approach.
Collapse
Affiliation(s)
- Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
7
|
Mackie TD, Kim BY, Subramanya AR, Bain DJ, O'Donnell AF, Welling PA, Brodsky JL. The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK). J Biol Chem 2018; 293:3201-3217. [PMID: 29311259 PMCID: PMC5836112 DOI: 10.1074/jbc.m117.819086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Indexed: 11/06/2022] Open
Abstract
Protein trafficking can act as the primary regulatory mechanism for ion channels with high open probabilities, such as the renal outer medullary (ROMK) channel. ROMK, also known as Kir1.1 (KCNJ1), is the major route for potassium secretion into the pro-urine and plays an indispensable role in regulating serum potassium and urinary concentrations. However, the cellular machinery that regulates ROMK trafficking has not been fully defined. To identify regulators of the cell-surface population of ROMK, we expressed a pH-insensitive version of the channel in the budding yeast Saccharomyces cerevisiae We determined that ROMK primarily resides in the endoplasmic reticulum (ER), as it does in mammalian cells, and is subject to ER-associated degradation (ERAD). However, sufficient ROMK levels on the plasma membrane rescued growth on low-potassium medium of yeast cells lacking endogenous potassium channels. Next, we aimed to identify the biological pathways most important for ROMK regulation. Therefore, we used a synthetic genetic array to identify non-essential genes that reduce the plasma membrane pool of ROMK in potassium-sensitive yeast cells. Genes identified in this screen included several members of the endosomal complexes required for transport (ESCRT) and the class-C core vacuole/endosome tethering (CORVET) complexes. Mass spectroscopy analysis confirmed that yeast cells lacking an ESCRT component accumulate higher potassium concentrations. Moreover, silencing of ESCRT and CORVET components increased ROMK levels at the plasma membrane in HEK293 cells. Our results indicate that components of the post-endocytic pathway influence the cell-surface density of ROMK and establish that components in this pathway modulate channel activity.
Collapse
Affiliation(s)
| | - Bo-Young Kim
- the Department of Physiology, University of Maryland at Baltimore, Baltimore, Maryland 21201
| | - Arohan R Subramanya
- the Departments of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- the Medicine and Research Services, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240, and
| | - Daniel J Bain
- Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Allyson F O'Donnell
- the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Paul A Welling
- the Department of Physiology, University of Maryland at Baltimore, Baltimore, Maryland 21201
| | | |
Collapse
|
8
|
O'Donnell BM, Mackie TD, Subramanya AR, Brodsky JL. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome. J Biol Chem 2017. [PMID: 28630040 DOI: 10.1074/jbc.m117.786376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type II Bartter syndrome is caused by mutations in the renal outer medullary potassium (ROMK) channel, but the molecular mechanisms underlying this disease are poorly defined. To rapidly screen for ROMK function, we developed a yeast expression system and discovered that yeast cells lacking endogenous potassium channels could be rescued by WT ROMK but not by ROMK proteins containing any one of four Bartter mutations. We also found that the mutant proteins were significantly less stable than WT ROMK. However, their degradation was slowed in the presence of a proteasome inhibitor or when yeast cells contained mutations in the CDC48 or SSA1 gene, which is required for endoplasmic reticulum (ER)-associated degradation (ERAD). Consistent with these data, sucrose gradient centrifugation and indirect immunofluorescence microscopy indicated that most ROMK protein was ER-localized. To translate these findings to a more relevant cell type, we measured the stabilities of WT ROMK and the ROMK Bartter mutants in HEK293 cells. As in yeast, the Bartter mutant proteins were less stable than the WT protein, and their degradation was slowed in the presence of a proteasome inhibitor. Finally, we discovered that low-temperature incubation increased the steady-state levels of a Bartter mutant, suggesting that the disease-causing mutation traps the protein in a folding-deficient conformation. These findings indicate that the underlying pathology for at least a subset of patients with type II Bartter syndrome is linked to the ERAD pathway and that future therapeutic strategies should focus on correcting deficiencies in ROMK folding.
Collapse
Affiliation(s)
- Brighid M O'Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
9
|
Pérez-Samartín A, Garay E, Moctezuma JPH, Cisneros-Mejorado A, Sánchez-Gómez MV, Martel-Gallegos G, Robles-Martínez L, Canedo-Antelo M, Matute C, Arellano RO. Inwardly Rectifying K + Currents in Cultured Oligodendrocytes from Rat Optic Nerve are Insensitive to pH. Neurochem Res 2017; 42:2443-2455. [PMID: 28345117 DOI: 10.1007/s11064-017-2242-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 10/25/2022]
Abstract
Inwardly rectifying K+ (Kir) channel expression signals at an advanced stage of maturation during oligodendroglial differentiation. Knocking down their expression halts the generation of myelin and produces severe abnormalities in the central nervous system. Kir4.1 is the main subunit involved in the tetrameric structure of Kir channels in glial cells; however, the precise composition of Kir channels expressed in oligodendrocytes (OLs) remains partially unknown, as participation of other subunits has been proposed. Kir channels are sensitive to H+; thus, intracellular acidification produces Kir current inhibition. Since Kir subunits have differential sensitivity to H+, we studied the effect of intracellular acidification on Kir currents expressed in cultured OLs derived from optic nerves of 12-day-old rats. Unexpectedly, Kir currents in OLs (2-4 DIV) did not change within the pH range of 8.0-5.0, as observed when using standard whole-cell voltage-clamp recording or when preserving cytoplasmic components with the perforated patch-clamp technique. In contrast, low pH inhibited astrocyte Kir currents, which was consistent with the involvement of the Kir4.1 subunit. The H+-insensitivity expressed in OL Kir channels was not intrinsic because Kir cloning showed no difference in the sequence reported for the Kir4.1, Kir2.1, or Kir5.1 subunits. Moreover, when Kir channels were heterologously expressed in Xenopus oocytes they behaved as expected in their general properties and sensitivity to H+. It is therefore concluded that Kir channel H+-sensitivity in OLs is modulated through an extrinsic mechanism, probably by association with a modulatory component or by posttranslational modifications.
Collapse
Affiliation(s)
- Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Departamento de Neurociencias, Universidad del País Vasco, 48940, Leioa, Vizcaya, Spain
| | - Edith Garay
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla, 76230, Querétaro, Mexico
| | - Juan Pablo H Moctezuma
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla, 76230, Querétaro, Mexico
| | - Abraham Cisneros-Mejorado
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla, 76230, Querétaro, Mexico
| | - María Victoria Sánchez-Gómez
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Departamento de Neurociencias, Universidad del País Vasco, 48940, Leioa, Vizcaya, Spain
| | - Guadalupe Martel-Gallegos
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla, 76230, Querétaro, Mexico
| | - Leticia Robles-Martínez
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla, 76230, Querétaro, Mexico
| | - Manuel Canedo-Antelo
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Departamento de Neurociencias, Universidad del País Vasco, 48940, Leioa, Vizcaya, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Departamento de Neurociencias, Universidad del País Vasco, 48940, Leioa, Vizcaya, Spain.
| | - Rogelio O Arellano
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla, 76230, Querétaro, Mexico.
| |
Collapse
|
10
|
Sazanavets I, Warwicker J. Computational Tools for Interpreting Ion Channel pH-Dependence. PLoS One 2015; 10:e0125293. [PMID: 25915903 PMCID: PMC4411139 DOI: 10.1371/journal.pone.0125293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 03/21/2015] [Indexed: 01/23/2023] Open
Abstract
Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) – Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.
Collapse
Affiliation(s)
- Ivan Sazanavets
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Sepúlveda FV, Pablo Cid L, Teulon J, Niemeyer MI. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol Rev 2015; 95:179-217. [PMID: 25540142 DOI: 10.1152/physrev.00016.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge.
Collapse
Affiliation(s)
- Francisco V Sepúlveda
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - L Pablo Cid
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - Jacques Teulon
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| | - María Isabel Niemeyer
- Centro de Estudios Científicos, Valdivia, Chile; UPMC Université Paris 06, Team 3, Paris, France; and Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Paris, France
| |
Collapse
|
12
|
Fowler PW, Bollepalli MK, Rapedius M, Nematian-Ardestani E, Shang L, Sansom MS, Tucker SJ, Baukrowitz T. Insights into the structural nature of the transition state in the Kir channel gating pathway. Channels (Austin) 2014; 8:551-5. [PMID: 25483285 PMCID: PMC4594414 DOI: 10.4161/19336950.2014.962371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a previous study we identified an extensive gating network within the inwardly rectifying Kir1.1 (ROMK) channel by combining systematic scanning mutagenesis and functional analysis with structural models of the channel in the closed, pre-open and open states. This extensive network appeared to stabilize the open and pre-open states, but the network fragmented upon channel closure. In this study we have analyzed the gating kinetics of different mutations within key parts of this gating network. These results suggest that the structure of the transition state (TS), which connects the pre-open and closed states of the channel, more closely resembles the structure of the pre-open state. Furthermore, the G-loop, which occurs at the center of this extensive gating network, appears to become unstructured in the TS because mutations within this region have a ‘catalytic’ effect upon the channel gating kinetics.
Collapse
Affiliation(s)
- Philip W Fowler
- a Department of Biochemistry ; University of Oxford , Oxford , UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bagriantsev SN, Chatelain FC, Clark KA, Alagem N, Reuveny E, Minor DL. Tethered protein display identifies a novel Kir3.2 (GIRK2) regulator from protein scaffold libraries. ACS Chem Neurosci 2014; 5:812-22. [PMID: 25028803 PMCID: PMC4176385 DOI: 10.1021/cn5000698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Use of randomized peptide libraries
to evolve molecules with new
functions provides a means for developing novel regulators of protein
activity. Despite the demonstrated power of such approaches for soluble
targets, application of this strategy to membrane systems, such as
ion channels, remains challenging. Here, we have combined libraries
of a tethered protein scaffold with functional selection in yeast
to develop a novel activator of the G-protein-coupled mammalian inwardly
rectifying potassium channel Kir3.2 (GIRK2). We show that the novel
regulator, denoted N5, increases Kir3.2 (GIRK2) basal activity by
inhibiting clearance of the channel from the cellular surface rather
than affecting the core biophysical properties of the channel. These
studies establish the tethered protein display strategy as a means
to create new channel modulators and highlight the power of approaches
that couple randomized libraries with direct selections for functional
effects. Our results further underscore the possibility for the development
of modulators that influence channel function by altering cell surface
expression densities rather than by direct action on channel biophysical
parameters. The use of tethered library selection strategies coupled
with functional selection bypasses the need for a purified target
and is likely to be applicable to a range of membrane protein systems.
Collapse
Affiliation(s)
| | | | | | - Noga Alagem
- Department
of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eitan Reuveny
- Department
of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel L. Minor
- Physical
Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Bollepalli MK, Fowler PW, Rapedius M, Shang L, Sansom MSP, Tucker SJ, Baukrowitz T. State-dependent network connectivity determines gating in a K+ channel. Structure 2014; 22:1037-46. [PMID: 24980796 PMCID: PMC4087272 DOI: 10.1016/j.str.2014.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
X-ray crystallography has provided tremendous insight into the different structural states of membrane proteins and, in particular, of ion channels. However, the molecular forces that determine the thermodynamic stability of a particular state are poorly understood. Here we analyze the different X-ray structures of an inwardly rectifying potassium channel (Kir1.1) in relation to functional data we obtained for over 190 mutants in Kir1.1. This mutagenic perturbation analysis uncovered an extensive, state-dependent network of physically interacting residues that stabilizes the pre-open and open states of the channel, but fragments upon channel closure. We demonstrate that this gating network is an important structural determinant of the thermodynamic stability of these different gating states and determines the impact of individual mutations on channel function. These results have important implications for our understanding of not only K+ channel gating but also the more general nature of conformational transitions that occur in other allosteric proteins. Functional validation of different crystallographic states of Kir channels Presence of a state-dependent gating network revealed by large-scale mutagenesis Biased effect of mutations on Kir channel gating due to open-state destabilization Long-range allosteric coupling mediated by a physically connected residue network
Collapse
Affiliation(s)
- Murali K Bollepalli
- Physiological Institute, Christian-Albrechts University, 24118 Kiel, Germany
| | - Philip W Fowler
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Markus Rapedius
- Physiological Institute, Christian-Albrechts University, 24118 Kiel, Germany
| | - Lijun Shang
- Clarendon Laboratory, Department of Physics, University of Oxford Oxford, OX1 3PU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; OXION Ion Channel Initiative, University of Oxford, Oxford OX1 3PT, UK
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford Oxford, OX1 3PU, UK; OXION Ion Channel Initiative, University of Oxford, Oxford OX1 3PT, UK.
| | - Thomas Baukrowitz
- Physiological Institute, Christian-Albrechts University, 24118 Kiel, Germany.
| |
Collapse
|
15
|
Zubcevic L, Bavro VN, Muniz JRC, Schmidt MR, Wang S, De Zorzi R, Venien-Bryan C, Sansom MSP, Nichols CG, Tucker SJ. Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains. J Biol Chem 2014; 289:143-51. [PMID: 24257749 PMCID: PMC3879539 DOI: 10.1074/jbc.m113.501833] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/04/2013] [Indexed: 01/22/2023] Open
Abstract
KirBac channels are prokaryotic homologs of mammalian inwardly rectifying potassium (Kir) channels, and recent structures of KirBac3.1 have provided important insights into the structural basis of gating in Kir channels. In this study, we demonstrate that KirBac3.1 channel activity is strongly pH-dependent, and we used x-ray crystallography to determine the structural changes that arise from an activatory mutation (S205L) located in the cytoplasmic domain (CTD). This mutation stabilizes a novel energetically favorable open conformation in which changes at the intersubunit interface in the CTD also alter the electrostatic potential of the inner cytoplasmic cavity. These results provide a structural explanation for the activatory effect of this mutation and provide a greater insight into the role of the CTD in Kir channel gating.
Collapse
Affiliation(s)
- Lejla Zubcevic
- From the Biological Physics Group, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Vassiliy N. Bavro
- From the Biological Physics Group, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- the School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Joao R. C. Muniz
- the Sao Carlos Institute of Physics, University of Sao Paulo, Sao Paulo SP 13560-970, Brazil
| | - Matthias R. Schmidt
- the Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Shizhen Wang
- the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | - Catherine Venien-Bryan
- Harvard Medical School, Boston, Massachusetts 02115
- the Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), CNRS-UMR 7590, Université Pierre et Marie Curie, 75005 Paris, France, and
| | - Mark S. P. Sansom
- the Structural Bioinformatics and Computational Biochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
- the OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Colin G. Nichols
- the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stephen J. Tucker
- From the Biological Physics Group, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- the OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
16
|
Using yeast to study potassium channel function and interactions with small molecules. Methods Mol Biol 2013; 995:31-42. [PMID: 23494370 DOI: 10.1007/978-1-62703-345-9_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Analysis of ion channel mutants is a widely used approach for dissecting ion channel function and for characterizing the mechanisms of action of channel-directed modulators. Expression of functional potassium channels in potassium-uptake-deficient yeast together with genetic selection approaches offers an unbiased, high-throughput, activity-based readout that can rapidly identify large numbers of active ion channel mutants. Because of the assumption-free nature of the method, detailed biophysical analysis of the functional mutants from such selections can provide new and unexpected insights into both ion channel gating and ion channel modulator mechanisms. Here, we present detailed protocols for generation and identification of functional mutations in potassium channels using yeast selections in the potassium-uptake-deficient strain SGY1528. This approach is applicable for the analysis of structure-function relationships of potassium channels from a wide range of sources including viruses, bacteria, plants, and mammals and can be used as a facile way to probe the interactions between ion channels and small-molecule modulators.
Collapse
|
17
|
The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 2011; 461:423-35. [DOI: 10.1007/s00424-010-0915-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/10/2010] [Accepted: 12/17/2010] [Indexed: 11/25/2022]
|