1
|
Soudavari R, Batabyal A, Lukowiak K. In the great pond snail (Lymnaea stagnalis), two stressors that individually enhance memory in combination block memory formation. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stress plays an important role in memory formation in the great pond snail (Lymnaea stagnalis (Linnaeus, 1758)). Individual stressors have been shown to enhance or to perturb long-term memory (LTM) formation. However, when snails perceive a combination of two stressors, it is unclear the outcome with regards to LTM formation. Here we first show that when L. stagnalis are exposed individually to either a predator stressor (crayfish effluent (CE), which is a kairomone) or a thermal stressor (30 °C), LTM formation is enhanced. In their natural environment, L. stagnalis may experience temperatures approaching 30 °C and they may encounter crayfish at the same time. How such a combination of stressors alters adaptive behaviour is unknown. Here we show that when these two stressors are combined, LTM formation is blocked. Since boiling CE inactivates the kairomone, we used previously boiled CE that we combined with the thermal stressor and found that LTM formation is again enhanced. These data show that (i) it cannot accurately be predicted how a combination of stressors when combined interact to alter LTM formation and (ii) there is a difference between hot CE and room temperature CE.
Collapse
Affiliation(s)
- Romina Soudavari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anuradha Batabyal
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Strain-specific effects of crowding on long-term memory formation in Lymnaea. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:43-51. [DOI: 10.1016/j.cbpa.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
|
3
|
Dodd SX, Lukowiak K. Sequential exposure to a combination of stressors blocks memory reconsolidation in Lymnaea. J Exp Biol 2015; 218:923-30. [PMID: 25617463 DOI: 10.1242/jeb.114876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Stress alters the formation of long-term memory (LTM) in Lymnaea. When snails are exposed to more than one stressor, however, how the memory is altered becomes complicated. Here, we investigated how multiple stressors applied in a specific pattern affect an aspect of memory not often studied in regards to stress - reconsolidation. We hypothesized that the application of a sequence of stressors would block the reconsolidation process. Reconsolidation occurs following activation of a previously formed memory. Sequential crowding and handling were used as the stressors to block reconsolidation. When the two stressors were sequentially presented immediately following memory activation, reconsolidation was blocked. However, if the sequential presentation of the stressors was delayed for 1 h after memory activation, reconsolidation was not blocked. That is, LTM was observed. Finally, presentation of either stressor alone did not block reconsolidation. Thus, stressors can block reconsolidation, which may be preferable to pharmacological manipulations.
Collapse
Affiliation(s)
- Shawn Xavier Dodd
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
4
|
Lukowiak K, Sunada H, Teskey M, Lukowiak K, Dalesman S. Environmentally relevant stressors alter memory formation in the pond snail Lymnaea. J Exp Biol 2014; 217:76-83. [DOI: 10.1242/jeb.089441] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stress alters adaptive behaviours such as learning and memory. Stressors can either enhance or diminish learning, memory formation and/or memory recall. We focus attention here on how environmentally relevant stressors alter learning, memory and forgetting in the pond snail, Lymnaea stagnalis. Operant conditioning of aerial respiration causes associative learning that may lead to long-term memory (LTM) formation. However, individual ecologically relevant stressors, combinations of stressors, and bio-active substances can alter whether or not learning occurs or memory forms. While the behavioural memory phenotype may be similar as a result of exposure to different stressors, how each stressor alters memory formation may occur differently. In addition, when a combination of stressors are presented it is difficult to predict ahead of time what the outcome will be regarding memory formation. Thus, how combinations of stressors act is an emergent property of how the snail perceives the stressors.
Collapse
Affiliation(s)
- Ken Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Morgan Teskey
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Kai Lukowiak
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Sarah Dalesman
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| |
Collapse
|
5
|
Dalesman S, Karnik V, Lukowiak K. Sensory mediation of memory blocking stressors in the pond snail Lymnaea stagnalis. J Exp Biol 2011; 214:2528-33. [DOI: 10.1242/jeb.058024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SUMMARY
The great pond snail, Lymnaea stagnalis, is commonly used as a model species to study how stress affects the ability to form long-term memory (LTM); however, we still have little information about how the snail senses stressful stimuli. The osphradium is an external sensory organ that demonstrates electrophysiological responses to a variety of external chemical stimuli. We examined the role, if any, played by the osphradium in sensing two environmental stressors, crowding and low environmental calcium, both known to block LTM in intact animals. We severed the osphradial nerve, blocking external sensory input from this organ to the central nervous system, and then exposed the snails to low environmental calcium or crowding stress to assess whether these stressors continued to block LTM formation. When exposed to low environmental calcium, snails with their osphradial nerve severed responded as if they were maintained in our standard calcium environment. That is, they did not respond to low calcium as a stressor blocking LTM; therefore, the osphradium plays a crucial role in mediating how snails respond to this stressor. However, following crowding, LTM formation was blocked in both control groups and snails that had the osphradial nerve severed, indicating that sensory information from the osphradium is not required to sense crowded conditions. Together these data show that two stressors that result in the same behavioural phenotype, blocking LTM formation, do so via two distinct sensory pathways.
Collapse
Affiliation(s)
- Sarah Dalesman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vikram Karnik
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|