1
|
Gogia N, Chimata AV, Deshpande P, Singh A, Singh A. Hippo signaling: bridging the gap between cancer and neurodegenerative disorders. Neural Regen Res 2021; 16:643-652. [PMID: 33063715 PMCID: PMC8067938 DOI: 10.4103/1673-5374.295273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During development, regulation of organ size requires a balance between cell proliferation, growth and cell death. Dysregulation of these fundamental processes can cause a variety of diseases. Excessive cell proliferation results in cancer whereas excessive cell death results in neurodegenerative disorders. Many signaling pathways known-to-date have a role in growth regulation. Among them, evolutionarily conserved Hippo signaling pathway is unique as it controls both cell proliferation and cell death by a variety of mechanisms during organ sculpture and development. Neurodegeneration, a complex process of progressive death of neuronal population, results in fatal disorders with no available cure to date. During normal development, cell death is required for sculpting of an organ. However, aberrant cell death in neuronal cell population can result in neurodegenerative disorders. Hippo pathway has gathered major attention for its role in growth regulation and cancer, however, other functions like its role in neurodegeneration are also emerging rapidly. This review highlights the role of Hippo signaling in cell death and neurodegenerative diseases and provide the information on the chemical inhibitors employed to block Hippo pathway. Understanding Hippo mediated cell death mechanisms will aid in development of reliable and effective therapeutic strategies in future.
Collapse
Affiliation(s)
- Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | | | - Aditi Singh
- Medical Candidate, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Amit Singh
- Department of Biology; Premedical Program; Center for Tissue Regeneration and Engineering at Dayton (TREND); The Integrative Science and Engineering Center, University of Dayton, Dayton, OH; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
2
|
Zhang C, Wang F, Gao Z, Zhang P, Gao J, Wu X. Regulation of Hippo Signaling by Mechanical Signals and the Cytoskeleton. DNA Cell Biol 2020; 39:159-166. [PMID: 31821009 DOI: 10.1089/dna.2019.5087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Cong Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, China
- State Education Ministry Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| | - Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zengxin Gao
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Orthopedics, Nanjing Lishui People’s Hospital, Nanjing, China
- Department of Orthopedics, Zhongda Hospital, Lishui Branch, Southeast University, Nanjing, China
| | - Pei Zhang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiawei Gao
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, China
- State Education Ministry Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Surgery Research Center, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Sahu MR, Mondal AC. The emerging role of Hippo signaling in neurodegeneration. J Neurosci Res 2019; 98:796-814. [PMID: 31705587 DOI: 10.1002/jnr.24551] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegeneration refers to the complex process of progressive degeneration or neuronal apoptosis leading to a set of incurable and debilitating conditions. Physiologically, apoptosis is important in proper growth and development. However, aberrant and unrestricted apoptosis can lead to a variety of degenerative conditions including neurodegenerative diseases. Although dysregulated apoptosis has been implicated in various neurodegenerative disorders, the triggers and molecular mechanisms underlying such untimely and faulty apoptosis are still unknown. Hippo signaling pathway is one such apoptosis-regulating mechanism that has remained evolutionarily conserved from Drosophila to mammals. This pathway has gained a lot of attention for its tumor-suppressing task, but recent studies have emphasized the soaring role of this pathway in inflaming neurodegeneration. In addition, strategies promoting inactivation of this pathway have aided in the rescue of neurons from anomalous apoptosis. So, a thorough understanding of the relationship between the Hippo pathway and neurodegeneration may serve as a guide for the development of therapy for various degenerative diseases. The current review focuses on the mechanism of the Hippo signaling pathway, its upstream and downstream regulatory molecules, and its role in the genesis of numerous neurodegenerative diseases. The recent efforts employing the Hippo pathway components as targets for checking neurodegeneration have also been highlighted.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Yu L, Zhou Q, Pignoni F. ato-Gal4 fly lines for gene function analysis: Eya is required in late progenitors for eye morphogenesis. Genesis 2015; 53:347-55. [PMID: 25980363 DOI: 10.1002/dvg.22858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/11/2022]
Abstract
The Gal4/UAS system is one of the most powerful tools for the study of cellular and developmental processes in Drosophila. Gal4 drivers can be used to induce targeted expression of dominant-negative and dominant-active proteins, histological markers, activity sensors, gene-specific dsRNAs, modulators of cell survival or proliferation, and other reagents. Here, we describe novel atonal-Gal4 lines that contain regions of the regulatory DNA of atonal, the proneural gene for photoreceptors, stretch receptors, auditory organ, and some olfactory sensilla. During neurogenesis, the atonal gene is expressed at a critical juncture, a time of transition from progenitor cell to developing neuron. Thus, these lines are particularly well suited for the study of the transcription factors and signaling molecules orchestrating this critical transition. To demonstrate their usefulness, we focus on two visual organs, the eye and the Bolwig. We demonstrate the induction of predicted eye phenotypes when expressing the dominant-negative EGF receptor or a dsRNA against Notch in the developing eye disc. In another example, we show the deletion of the Bolwig's organ using the proapoptotic factor Hid. Finally, we investigate the function of the eye specification factor Eyes absent or Eya in late retinal progenitors, shortly before they begin morphogenesis. We show that Eya is still required in these late progenitors to promote eye formation, and show failure to induce the target gene atonal and consequent lack of neuron formation.
Collapse
Affiliation(s)
- Linlin Yu
- Department of Ophthalmology, Center for Vision Research, and SUNY Eye Institute, SUNY Upstate Medical University, Syracuse, New York
| | - Qingxiang Zhou
- Department of Ophthalmology, Center for Vision Research, and SUNY Eye Institute, SUNY Upstate Medical University, Syracuse, New York
| | - Francesca Pignoni
- Department of Ophthalmology, Center for Vision Research, and SUNY Eye Institute, SUNY Upstate Medical University, Syracuse, New York.,Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, New York.,Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
5
|
Abstract
The Hippo pathway is a kinase cascade, formed by Hippo, Salvador, Warts, and Mats, that regulates the subcellular distribution and transcriptional activity of Yorkie. Yorkie is a transcriptional coactivator that promotes the expression of genes that inhibit apoptosis and drive cell proliferation. We review recent studies indicating that activity of the Hippo pathway is controlled by cell-cell junctions, cell adhesion molecules, scaffolding proteins, and cytoskeletal proteins, as well as by regulators of apical-basal polarity and extracellular tension.
Collapse
Affiliation(s)
- Leonie Enderle
- 1Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
6
|
Schroeder MC, Halder G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin Cell Dev Biol 2012; 23:803-11. [DOI: 10.1016/j.semcdb.2012.06.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/28/2023]
|