1
|
Kale VP. Transforming growth factor-β boosts the functionality of human bone marrow-derived mesenchymal stromal cells. Cell Biol Int 2020; 44:2293-2306. [PMID: 32749730 DOI: 10.1002/cbin.11437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022]
Abstract
Transforming growth factor β1 (TGFβ1) is a negative regulator of hematopoiesis, and yet, it is frequently found at the active sites of hematopoiesis. Here, we show for the first time that bone marrow-derived mononuclear cells (BM MNCs) secrete TGFβ1 in response to erythropoietin (EPO). We further show that human bone marrow-derived mesenchymal stromal cells (BMSCs) briefly exposed to the conditioned medium of EPO-primed MNCs, or purified TGFβ1, gain significantly increased hematopoiesis-supportive ability. Mechanistically, we show that this phenomenon involves TGFβ1-mediated activation of nitric oxide (NO) signalling pathway in the BMSCs. The data suggest that EPO-MNC-TGFβ1 could be one of the regulatory axes operative in the bone marrow microenvironment involved in maintaining the functionality of the resident BMSCs.
Collapse
Affiliation(s)
- Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, India
| |
Collapse
|
2
|
Ghosh D, Brown SL, Stumhofer JS. IL-17 Promotes Differentiation of Splenic LSK - Lymphoid Progenitors into B Cells following Plasmodium yoelii Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:1783-1795. [PMID: 28733485 DOI: 10.4049/jimmunol.1601972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/28/2017] [Indexed: 01/01/2023]
Abstract
Lineage-Sca-1+c-Kit- (LSK-) cells are a lymphoid progenitor population that expands in the spleen and preferentially differentiates into mature B cells in response to Plasmodium yoelii infection in mice. Furthermore, LSK- derived B cells can subsequently contribute to the ongoing immune response through the generation of parasite-specific Ab-secreting cells, as well as germinal center and memory B cells. However, the factors that promote their differentiation into B cells in the spleen postinfection are not defined. In this article, we show that LSK- cells produce the cytokine IL-17 in response to Plasmodium infection. Using Il-17ra-/- mice, IL-17R signaling in cells other than LSK- cells was found to support their differentiation into B cells. Moreover, primary splenic stromal cells grown in the presence of IL-17 enhanced the production of CXCL12, a chemokine associated with B cell development in the bone marrow, by a population of IL-17RA-expressing podoplanin+CD31- stromal cells, a profile associated with fibroblastic reticular cells. Subsequent blockade of CXCL12 in vitro reduced differentiation of LSK- cells into B cells, supporting a direct role for this chemokine in this process. Immunofluorescence indicated that podoplanin+ stromal cells in the red pulp were the primary producers of CXCL12 after P. yoelii infection. Furthermore, podoplanin staining on stromal cells was more diffuse, and CXCL12 staining was dramatically reduced in Il-17ra-/- mice postinfection. Together, these results identify a distinct pathway that supports lymphoid development in the spleen during acute Plasmodium infection.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Susie L Brown
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
3
|
Sinyuk M, Alvarado AG, Nesmiyanov P, Shaw J, Mulkearns-Hubert EE, Eurich JT, Hale JS, Bogdanova A, Hitomi M, Maciejewski J, Huang AY, Saunthararajah Y, Lathia JD. Cx25 contributes to leukemia cell communication and chemosensitivity. Oncotarget 2016; 6:31508-21. [PMID: 26375552 PMCID: PMC4741621 DOI: 10.18632/oncotarget.5226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022] Open
Abstract
Leukemia encompasses several hematological malignancies with shared phenotypes that include rapid proliferation, abnormal leukocyte self-renewal, and subsequent disruption of normal hematopoiesis. While communication between leukemia cells and the surrounding stroma supports tumor survival and expansion, the mechanisms underlying direct leukemia cell-cell communication and its contribution to tumor growth are undefined. Gap junctions are specialized intercellular connections composed of connexin proteins that allow free diffusion of small molecules and ions directly between the cytoplasm of adjacent cells. To characterize homotypic leukemia cell communication, we employed in vitro models for both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and measured gap junction function through dye transfer assays. Additionally, clinically relevant gap junction inhibitors, carbenoxolone (CBX) and 1-octanol, were utilized to uncouple the communicative capability of leukemia cells. Furthermore, a qRT-PCR screen revealed several connexins with higher expression in leukemia cells compared with normal hematopoietic stem cells. Cx25 was identified as a promising adjuvant therapeutic target, and Cx25 but not Cx43 reduction via RNA interference reduced intercellular communication and sensitized cells to chemotherapy. Taken together, our data demonstrate the presence of homotypic communication in leukemia through a Cx25-dependent gap junction mechanism that can be exploited for the development of anti-leukemia therapies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Alvaro G Alvarado
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Lerner College of Medicine, Case Western University, Cleveland, OH, USA
| | - Pavel Nesmiyanov
- Department of Immunology and Allergy, Volgograd State Medical University, Volgograd, Russia
| | - Jeremy Shaw
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erin E Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer T Eurich
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Bogdanova
- Department of Immunology and Allergy, Volgograd State Medical University, Volgograd, Russia
| | - Masahiro Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Lerner College of Medicine, Case Western University, Cleveland, OH, USA
| | - Jaroslaw Maciejewski
- Department of Molecular Medicine, Lerner College of Medicine, Case Western University, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, USA
| | - Alex Y Huang
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, USA.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Yogen Saunthararajah
- Department of Molecular Medicine, Lerner College of Medicine, Case Western University, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.,Department of Molecular Medicine, Lerner College of Medicine, Case Western University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, USA
| |
Collapse
|
4
|
Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp Hematol 2016; 44:1092-1112.e2. [PMID: 27473566 DOI: 10.1016/j.exphem.2016.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 12/24/2022]
Abstract
Deciphering all mechanisms of intercellular communication used by hematopoietic progenitors is important, not only for basic stem cell research, but also in view of their therapeutic relevance. Here, we investigated whether these cells can produce the thin F-actin-based plasma membrane protrusions referred to as tunneling nanotubes (TNTs), which are known to bridge cells over long distances without contact with the substratum and transfer cargo molecules along them in various biological processes. We found that human primary CD34+ hematopoietic progenitors and leukemic KG1a cells develop such structures upon culture on primary mesenchymal stromal cells or specific extracellular-matrix-based substrata. Time-lapse video microscopy revealed that cell dislodgement is the primary mechanism responsible for TNT biogenesis. Surprisingly, we found that, among various cluster of differentiation (CD) markers, only the stem cell antigen CD133 is transferred between cells. It is selectively and directionally transported along the surface of TNTs in small clusters, such as cytoplasmic phospho-myosin light chain 2, suggesting that the latter actin motor protein might be implicated in this process. Our data provide new insights into the biology of hematopoietic progenitors that can contribute to our understanding of all facets of intercellular communication in the bone marrow microenvironment under healthy or cancerous conditions.
Collapse
|
5
|
The tissue inhibitor of metalloproteinases 1 increases the clonogenic efficiency of human hematopoietic progenitor cells through CD63/PI3K/Akt signaling. Exp Hematol 2015. [DOI: 10.1016/j.exphem.2015.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Lin HD, Fong CY, Biswas A, Choolani M, Bongso A. Human Wharton's jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells. Stem Cell Rev Rep 2015; 10:573-86. [PMID: 24789672 DOI: 10.1007/s12015-014-9514-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several groups have reported that primitive mesenchymal stem cells from the gelatinous matrix of the Wharton's jelly of the human umbilical cord (hWJSCs) possess tumoricidal properties and inhibit the growth of solid tumours such as human mammary carcinoma, ovarian carcinoma and osteosarcoma. This unique characteristic led to the hypothesis that hWJSCs serve as a natural defence against migrating cancer cells from mother to fetus thus explaining why tumorigenesis in the fetus is rare. However, it is not known whether non-solid malignant hematopoietic cells are also inhibited by hWJSCs and what the exact tumoricidal mechanisms are. We therefore evaluated the influence of hWJSCs and its extracts on Burkitt's lymphoma cells. Cell proliferation (BrdU and Ki67+), viability (MTT) and cell death (Annexin V-Propidium iodide and live/dead) assays showed significant inhibition of lymphoma cell growth after 48 h exposure to hWJSCs or its extracts compared to controls. Increased cell death was observed at sub-G1 and S and decreased proliferation at G2/M phases of the mitotic cycle. Superoxide dismutase and hydrogen peroxide activity were significantly increased and glutathione peroxidase significantly decreased in treated lymphoma cells. Time lapse imaging and confocal z-stack images showed yellow fluorescent in situ hybridization (FISH) signals of lymphoma cell Y chromosomes within the cytoplasm of female red labelled hWJSCs. We hypothesize that the growth of lymphoma cells is inhibited by the molecules secreted by hWJSCs that use oxidative stress pathways to induce cell death followed by engulfment of the apoptotic remains of the lymphoma cells by the hWJSCs.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, Singapore, 119228
| | | | | | | | | |
Collapse
|
7
|
Muth CA, Steinl C, Klein G, Lee-Thedieck C. Regulation of hematopoietic stem cell behavior by the nanostructured presentation of extracellular matrix components. PLoS One 2013; 8:e54778. [PMID: 23405094 PMCID: PMC3566109 DOI: 10.1371/journal.pone.0054778] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)-derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7-10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors.
Collapse
Affiliation(s)
- Christine Anna Muth
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Carolin Steinl
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Gerd Klein
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Cornelia Lee-Thedieck
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Liu Y, Chen XH, Si YJ, Li ZJ, Gao L, Gao L, Zhang C, Zhang X. Reconstruction of hematopoietic inductive microenvironment after transplantation of VCAM-1-modified human umbilical cord blood stromal cells. PLoS One 2012; 7:e31741. [PMID: 22384064 PMCID: PMC3285638 DOI: 10.1371/journal.pone.0031741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/12/2012] [Indexed: 01/13/2023] Open
Abstract
The hematopoietic inductive microenvironment (HIM) is where hematopoietic stem/progenitor cells grow and develop. Hematopoietic stromal cells were the key components of the HIM. In our previous study, we had successfully cultured and isolated human cord blood–derived stromal cells (HUCBSCs) and demonstrated that they could secret hemopoietic growth factors such as GM-CSF, TPO, and SCF. However, it is still controversial whether HUCBSCs can be used for reconstruction of HIM. In this study, we first established a co-culture system of HUCBSCs and cord blood CD34+ cells and then determined that using HUCBSCs as the adherent layer had significantly more newly formed colonies of each hematopoietic lineage than the control group, indicating that HUCBSCs had the ability to promote the proliferation of hematopoietic stem cells/progenitor cells. Furthermore, the number of colonies was significantly higher in vascular cell adhesion molecule-1 (VCAM-1)-modified HUCBSCs, suggesting that the ability of HUCBSCs in promoting the proliferation of hematopoietic stem cells/progenitor cells was further enhanced after having been modified with VCAM-1. Next, HUCBSCs were infused into a radiation-damaged animal model, in which the recovery of hematopoiesis was observed. The results demonstrate that the transplanted HUCBSCs were “homed in” to bone marrow and played roles in promoting the recovery of irradiation-induced hematopoietic damage and repairing HIM. Compared with the control group, the HUCBSC group had significantly superior effectiveness in terms of the recovery time for hemogram and myelogram, CFU-F, CFU-GM, BFU-E, and CFU-Meg. Such differences were even more significant in VCAM-1-modified HUCBSCs group. We suggest that HUCBSCs are able to restore the functions of HIM and promote the recovery of radiation-induced hematopoietic damage. VCAM-1 plays an important role in supporting the repair of HIM damage.
Collapse
Affiliation(s)
- Yao Liu
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xing-hua Chen
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Ying-jian Si
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
- Department of Pediatric Hematology/Oncology, BaYi Children's Hospital, The Military General Hospital of Beijing, Beijing, China
| | - Zhong-jun Li
- Department of Blood Transfusion, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Cheng Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
9
|
Rellick SL, O'Leary H, Piktel D, Walton C, Fortney JE, Akers SM, Martin KH, Denvir J, Boskovic G, Primerano DA, Vos J, Bailey N, Gencheva M, Gibson LF. Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One 2012; 7:e30758. [PMID: 22363485 PMCID: PMC3281873 DOI: 10.1371/journal.pone.0030758] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 12/28/2011] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a microenvironment niche capable of supporting both immature progenitors and stem cells with the capacity to differentiate and expand. Osteoblasts comprise one important component of this niche. We determined that treatment of human primary osteoblasts (HOB) with melphalan or VP-16 resulted in increased phospho-Smad2, consistent with increased TGF-β1 activity. This increase was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and adherence. The supportive deficit was not limited to committed progenitor cells, as human embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with HOB pre-exposed to melphalan, VP-16 or rTGF-β1 had profiles distinct from the same populations co-cultured with untreated HOB. Functional support deficits were downstream of changes in HOB gene expression profiles following chemotherapy exposure. Melphalan and VP-16 induced damage of HOB suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-transplant regimens and suggests that dose escalated chemotherapy may contribute to post-transplantation hematopoietic deficits by damaging structural components of this supportive niche.
Collapse
Affiliation(s)
- Stephanie L. Rellick
- Cancer Cell Biology Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Heather O'Leary
- Cancer Cell Biology Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Debbie Piktel
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Cheryl Walton
- Department of Pediatrics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - James E. Fortney
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Stephen M. Akers
- Cancer Cell Biology Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Karen H. Martin
- Department of Neurobiology and Anatomy, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - James Denvir
- Department of Statistics, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Goran Boskovic
- Microarray Core Facility, Marshall University, Huntington, West Virginia, United States of America
| | - Donald A. Primerano
- Microarray Core Facility, Marshall University, Huntington, West Virginia, United States of America
| | - Jeffrey Vos
- West Virginia University Department of Pathology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America,
| | - Nathanael Bailey
- West Virginia University Department of Pathology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America,
| | - Marieta Gencheva
- Cancer Cell Biology Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Laura F. Gibson
- Cancer Cell Biology Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
10
|
Gibbings D, Voinnet O. Control of RNA silencing and localization by endolysosomes. Trends Cell Biol 2010; 20:491-501. [PMID: 20630759 DOI: 10.1016/j.tcb.2010.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/24/2023]
Abstract
Recent advances in the cell biology of RNA silencing have unraveled an intriguing association of post-transcriptionally regulated RNA with endolysosomal membranes in several circumstances of mRNA localization, microRNA activity and viral RNA transport and packaging. Endolysosomal membranes are a nexus of communication and transport between cells and their exterior environment for signaling receptors, pathogens and nutrients. Here, we discuss recent data that support a view that endolysosomal positioning of RNA might facilitate intercellular transmission of RNA and host defence against viruses and retrotransposons. Positioning of RNA regulatory mechanisms on endolysosomal membranes might permit rapid and localized control of microRNA (miRNA) gene regulatory programs and mRNA translation in response to environmental signals, such as activated plasma membrane receptors transported on endosomes. Finally, we suggest that the pathology of several conditions, including Huntington's disease, might be a consequence of the disruption of the control of RNA via endolysosomal membranes.
Collapse
Affiliation(s)
- Derrick Gibbings
- UPR2357, Centre National de la Recherche Scientifique, Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg France.
| | | |
Collapse
|