1
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
2
|
Müller MT, Schempp R, Lutz A, Felder T, Felder E, Miklavc P. Interaction of microtubules and actin during the post-fusion phase of exocytosis. Sci Rep 2019; 9:11973. [PMID: 31427591 PMCID: PMC6700138 DOI: 10.1038/s41598-019-47741-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023] Open
Abstract
Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis.
Collapse
Affiliation(s)
- M Tabitha Müller
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Rebekka Schempp
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Anngrit Lutz
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Tatiana Felder
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Edward Felder
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Pika Miklavc
- School of Environment and Life Sciences, University of Salford, The Crescent, M54WT, Salford, United Kingdom.
| |
Collapse
|
3
|
Kee AJ, Chagan J, Chan JY, Bryce NS, Lucas CA, Zeng J, Hook J, Treutlein H, Laybutt DR, Stehn JR, Gunning PW, Hardeman EC. On-target action of anti-tropomyosin drugs regulates glucose metabolism. Sci Rep 2018; 8:4604. [PMID: 29545590 PMCID: PMC5854615 DOI: 10.1038/s41598-018-22946-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
The development of novel small molecule inhibitors of the cancer-associated tropomyosin 3.1 (Tpm3.1) provides the ability to examine the metabolic function of specific actin filament populations. We have determined the ability of these anti-Tpm (ATM) compounds to regulate glucose metabolism in mice. Acute treatment (1 h) of wild-type (WT) mice with the compounds (TR100 and ATM1001) led to a decrease in glucose clearance due mainly to suppression of glucose-stimulated insulin secretion (GSIS) from the pancreatic islets. The impact of the drugs on GSIS was significantly less in Tpm3.1 knock out (KO) mice indicating that the drug action is on-target. Experiments in MIN6 β-cells indicated that the inhibition of GSIS by the drugs was due to disruption to the cortical actin cytoskeleton. The impact of the drugs on insulin-stimulated glucose uptake (ISGU) was also examined in skeletal muscle ex vivo. In the absence of drug, ISGU was decreased in KO compared to WT muscle, confirming a role of Tpm3.1 in glucose uptake. Both compounds suppressed ISGU in WT muscle, but in the KO muscle there was little impact of the drugs. Collectively, this data indicates that the ATM drugs affect glucose metabolism in vivo by inhibiting Tpm3.1's function with few off-target effects.
Collapse
Affiliation(s)
- Anthony J Kee
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jayshan Chagan
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Nicole S Bryce
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christine A Lucas
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jun Zeng
- MedChemSoft Solutions, Level 3 Brandon Park Drive, Wheelers Hill, 3150, VIC, Australia
| | - Jeff Hook
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Herbert Treutlein
- Sanoosa Pty. Ltd., 35 Collins Street, Melbourne, 3000, VIC, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, St Vincent's Hospital, UNSW Sydney, Sydney, NSW, Australia
| | - Justine R Stehn
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
- Novogen Pty Ltd, 502/20 George St, Hornsby, NSW, 2077, Australia
| | - Peter W Gunning
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Turner CT, Fuller M, Hopwood JJ, Meikle PJ, Brooks DA. Drug induced exocytosis of glycogen in Pompe disease. Biochem Biophys Res Commun 2016; 479:721-727. [PMID: 27693584 DOI: 10.1016/j.bbrc.2016.09.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/11/2023]
Abstract
Pompe disease is caused by a deficiency in the lysosomal enzyme α-glucosidase, and this leads to glycogen accumulation in the autolysosomes of patient cells. Glycogen storage material is exocytosed at a basal rate in cultured Pompe cells, with one study showing up to 80% is released under specific culture conditions. Critically, exocytosis induction may reduce glycogen storage in Pompe patients, providing the basis for a therapeutic strategy whereby stored glycogen is redirected to an extracellular location and subsequently degraded by circulating amylases. The focus of the current study was to identify compounds capable of inducing rapid glycogen exocytosis in cultured Pompe cells. Here, calcimycin, lysophosphatidylcholine and α-l-iduronidase each significantly increased glycogen exocytosis compared to vehicle-treated controls. The most effective compound, calcimycin, induced exocytosis through a Ca2+-dependent mechanism, although was unable to release a pool of vesicular glycogen larger than the calcimycin-induced exocytic pore. There was reduced glycogen release from Pompe compared to unaffected cells, primarily due to increased granule size in Pompe cells. Drug induced exocytosis therefore shows promise as a therapeutic approach for Pompe patients but strategies are required to enhance the release of large molecular weight glycogen granules.
Collapse
Affiliation(s)
- Christopher T Turner
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, SA Health and Medical Research Institute, Adelaide, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide 5001, Australia.
| |
Collapse
|
5
|
Kittelberger N, Breunig M, Martin R, Knölker HJ, Miklavc P. The role of myosin 1c and myosin 1b in surfactant exocytosis. J Cell Sci 2016; 129:1685-96. [PMID: 26940917 PMCID: PMC4852769 DOI: 10.1242/jcs.181313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.
Collapse
Affiliation(s)
- Nadine Kittelberger
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| | - Markus Breunig
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| | - René Martin
- Department of Chemistry, Technische Universität Dresden, Bergstr. 66, Dresden 01069, Germany
| | - Hans-Joachim Knölker
- Department of Chemistry, Technische Universität Dresden, Bergstr. 66, Dresden 01069, Germany
| | - Pika Miklavc
- Institute of General Physiology, Ulm University, Albert-Einstein Allee 11, Ulm 89081, Germany
| |
Collapse
|
6
|
Abstract
The spatial and temporal distribution of receptors constitutes an important mechanism for controlling the magnitude of cellular responses. Several members of the transient receptor potential (TRP) ion channel family can regulate their function by modulating their expression at the plasma membrane (PM) through rapid vesicular translocation and fusion. The mechanisms underlying this regulation are not completely understood, and the contribution of vesicular trafficking to physiological function is unknown. TRPM8 receptors are expressed in mammalian peripheral sensory neurons and are essential for the detection of cold temperatures. Previously, we showed that TRPM8-containing vesicles are segregated into three main pools, immobile at the PM, simple diffusive and corralled-hopping. Here, we show that channel expression at the PM is modulated by TRPM8 agonists in F11 and HEK293T cells. Our results support a model in which the activation of TRPM8 channels, located at the PM, induces a short-lived recruitment of a TRPM8-containing vesicular pool to the cell surface causing a transitory increase in the number of functional channels, affecting intrinsic properties of cold receptor responses. We further demonstrate the requirement of intact vesicular trafficking to support sustained cold responses in the skin of mice.
Collapse
|
7
|
Neuland K, Frick M. Vesicular control of fusion pore expansion. Commun Integr Biol 2015; 8:e1018496. [PMID: 26479858 PMCID: PMC4594593 DOI: 10.1080/19420889.2015.1018496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 11/16/2022] Open
Abstract
Exocytic post-fusion events play an important role determining the composition and quantity of cellular secretion. In particular, Ca2+-dependent regulation of fusion pore dilation/closure is a key regulator for fine-tuning vesicle content secretion. This requires a tight temporal and spatial integration of vesicle fusion with the PM, Ca2+ signals and translation of the Ca2+ signal into fusion pore dilation via auxiliary factors. Yet, it is still mostly elusive how this is achieved in slow and non-excitable secretory cells, where initial Ca2+ signals triggering fusions will abate before onset of the post-fusion phase. New results suggest, that the vesicles themselves provide the necessary itinerary to sense and link vesicle fusion to generation of local Ca2+ signals and fusion pore expansion.
Collapse
Affiliation(s)
- Kathrin Neuland
- Institute of General Physiology; University of Ulm ; Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology; University of Ulm ; Ulm, Germany
| |
Collapse
|
8
|
Miklavc P, Thompson KE, Frick M. A new role for P2X4 receptors as modulators of lung surfactant secretion. Front Cell Neurosci 2013; 7:171. [PMID: 24115920 PMCID: PMC3792447 DOI: 10.3389/fncel.2013.00171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/12/2013] [Indexed: 12/17/2022] Open
Abstract
In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types, P2X receptors have been found to stimulate vesicle exocytosis directly via Ca(2+) influx and elevation of the intracellular Ca(2+) concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs), large storage organelles for lung surfactant, results in a local, fusion-activated Ca(2+) entry (FACE) in alveolar type II epithelial cells. FACE is mediated via P2X4 receptors that are located on the limiting membrane of LBs and inserted into the plasma membrane upon exocytosis of LBs. The localized Ca(2+) influx at the site of vesicle fusion promotes fusion pore expansion and facilitates surfactant release. In addition, this inward-rectifying cation current across P2X4 receptors mediates fluid resorption from lung alveoli. It is hypothesized that the concomitant reduction in the alveolar lining fluid facilitates insertion of surfactant into the air-liquid interphase thereby "activating" it. These findings constitute a novel role for P2X4 receptors in regulating vesicle content secretion as modulators of the secretory output during the exocytic post-fusion phase.
Collapse
Affiliation(s)
- Pika Miklavc
- Institute of General Physiology, University of Ulm Ulm, Germany
| | | | | |
Collapse
|
9
|
Abstract
Regulated exocytosis mediates the release of hormones and transmitters. The last step of this process is represented by the merger between the vesicle and the plasma membranes, and the formation of a fusion pore. Once formed, the initially stable and narrow fusion pore may reversibly widen (transient exocytosis) or fully open (full-fusion exocytosis). Exocytosis is typically triggered by an elevation in cytosolic calcium activity. However, other second messengers, such as cAMP, have been reported to modulate secretion. The way in which cAMP influences the transitions between different fusion pore states remains unclear. Here, hormone release studies show that prolactin release from isolated rat lactotrophs stimulated by forskolin, an activator of adenylyl cyclases, and by membrane-permeable cAMP analog (dbcAMP), exhibit a biphasic concentration dependency. Although at lower concentrations (2-10 μm forskolin and 2.5-5 mm dbcAMP) these agents stimulate prolactin release, an inhibition is measured at higher concentrations (50 μm forskolin and 10-15 mm dbcAMP). By using high-resolution capacitance (Cm) measurements, we recorded discrete increases in Cm, which represent elementary exocytic events. An elevation of cAMP leaves the frequency of full-fusion events unchanged while increasing the frequency of transient events. These exhibited a wider fusion pore as measured by increased fusion pore conductance and a prolonged fusion pore dwell time. The probability of observing rhythmic reopening of transient fusion pores was elevated by dbcAMP. In conclusion, cAMP-mediated stabilization of wide fusion pores prevents vesicles from proceeding to the full-fusion stage of exocytosis, which hinders vesicle content discharge at high cAMP concentrations.
Collapse
|
10
|
Miklavc P, Frick M. Vesicular calcium channels as regulators of the exocytotic post-fusion phase. Commun Integr Biol 2012; 4:796-8. [PMID: 22446559 DOI: 10.4161/cib.17935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulated secretion is a fundamental cellular process in many different types of eukaryotic cells with Ca2(+-)triggered exocytosis taking centre stage. Elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) regulate multiple steps from vesicle fusion with the plasma membrane to fusion pore dilation and subsequent retrieval of spent vesicles. The general view is that the rise in [Ca(2+)](c) initiates during the pre-fusion stage and either results from Ca(2+)-influx via Ca(2+) channels in the plasma membrane or from release from intracellular Ca(2+)-stores. However, there is increasing evidence that exocytosis of secretory vesicles triggers additional, localised Ca(2+) signals via insertion of vesicle-associated Ca(2+) channels into the cell surface. These restricted Ca(2+) signals following fusion are ideally suited for regulating the post-fusion fate of individual secretory vesicles. In invertebrates they have been shown to trigger compensatory endocytosis. Recently we have reported that exocytosis of lamellar bodies in alveolar type II epithelial cells results in a localized Ca(2+)-influx via vesicular P2X(4) receptors which regulates fusion pore expansion and vesicle content release. This finding expands the emerging picture that post-fusion Ca(2+) entry via vesicle-associated Ca(2+) channels plays a central role for regulated exocytosis.
Collapse
Affiliation(s)
- Pika Miklavc
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
11
|
Heissler SM, Manstein DJ. Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 2012; 70:1-21. [PMID: 22565821 PMCID: PMC3535348 DOI: 10.1007/s00018-012-1002-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022]
Abstract
Members of the nonmuscle myosin-2 (NM-2) family of actin-based molecular motors catalyze the conversion of chemical energy into directed movement and force thereby acting as central regulatory components of the eukaryotic cytoskeleton. By cyclically interacting with adenosine triphosphate and F-actin, NM-2 isoforms promote cytoskeletal force generation in established cellular processes like cell migration, shape changes, adhesion dynamics, endo- and exo-cytosis, and cytokinesis. Novel functions of the NM-2 family members in autophagy and viral infection are emerging, making NM-2 isoforms regulators of nearly all cellular processes that require the spatiotemporal organization of cytoskeletal scaffolding. Here, we assess current views about the role of NM-2 isoforms in these activities including the tight regulation of NM-2 assembly and activation through phosphorylation and how NM-2-mediated changes in cytoskeletal dynamics and mechanics affect cell physiological functions in health and disease.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
12
|
Bond LM, Peden AA, Kendrick-Jones J, Sellers JR, Buss F. Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane. Mol Biol Cell 2011; 22:54-65. [PMID: 21148290 PMCID: PMC3016977 DOI: 10.1091/mbc.e10-06-0553] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 10/14/2010] [Accepted: 10/21/2010] [Indexed: 12/14/2022] Open
Abstract
During constitutive secretion, proteins synthesized at the endoplasmic reticulum (ER) are transported to the Golgi complex for processing and then to the plasma membrane for incorporation or extracellular release. This study uses a unique live-cell constitutive secretion assay to establish roles for the molecular motor myosin VI and its binding partner optineurin in discrete stages of secretion. Small interfering RNA-based knockdown of myosin VI causes an ER-to-Golgi transport delay, suggesting an unexpected function for myosin VI in the early secretory pathway. Depletion of myosin VI or optineurin does not affect the number of vesicles leaving the trans-Golgi network (TGN), indicating that these proteins do not function in TGN vesicle formation. However, myosin VI and optineurin colocalize with secretory vesicles at the plasma membrane. Furthermore, live-cell total internal reflection fluorescence microscopy demonstrates that myosin VI or optineurin depletion reduces the total number of vesicle fusion events at the plasma membrane and increases both the proportion of incomplete fusion events and the number of docked vesicles in this region. These results suggest a novel role for myosin VI and optineurin in regulation of fusion pores formed between secretory vesicles and the plasma membrane during the final stages of secretion.
Collapse
Affiliation(s)
- Lisa M. Bond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew A. Peden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | | - James R. Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
13
|
Miklavc P, Frick M, Wittekindt OH, Haller T, Dietl P. Fusion-activated Ca(2+) entry: an "active zone" of elevated Ca(2+) during the postfusion stage of lamellar body exocytosis in rat type II pneumocytes. PLoS One 2010; 5:e10982. [PMID: 20544027 PMCID: PMC2882333 DOI: 10.1371/journal.pone.0010982] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/12/2010] [Indexed: 12/15/2022] Open
Abstract
Background Ca2+ is essential for vesicle fusion with the plasma membrane in virtually all types of regulated exocytoses. However, in contrast to the well-known effects of a high cytoplasmic Ca2+ concentration ([Ca2+]c) in the prefusion phase, the occurrence and significance of Ca2+ signals in the postfusion phase have not been described before. Methodology/Principal Findings We studied isolated rat alveolar type II cells using previously developed imaging techniques. These cells release pulmonary surfactant, a complex of lipids and proteins, from secretory vesicles (lamellar bodies) in an exceptionally slow, Ca2+- and actin-dependent process. Measurements of fusion pore formation by darkfield scattered light intensity decrease or FM 1-43 fluorescence intensity increase were combined with analysis of [Ca2+]c by ratiometric Fura-2 or Fluo-4 fluorescence measurements. We found that the majority of single lamellar body fusion events were followed by a transient (t1/2 of decay = 3.2 s) rise of localized [Ca2+]c originating at the site of lamellar body fusion. [Ca2+]c increase followed with a delay of ∼0.2–0.5 s (method-dependent) and in the majority of cases this signal propagated throughout the cell (at ∼10 µm/s). Removal of Ca2+ from, or addition of Ni2+ to the extracellular solution, strongly inhibited these [Ca2+]c transients, whereas Ca2+ store depletion with thapsigargin had no effect. Actin-GFP fluorescence around fused LBs increased several seconds after the rise of [Ca2+]c. Both effects were reduced by the non-specific Ca2+ channel blocker SKF96365. Conclusions/Significance Fusion-activated Ca2+entry (FACE) is a new mechanism that leads to [Ca2+]c transients at the site of vesicle fusion. Substantial evidence from this and previous studies indicates that fusion-activated Ca2+ entry enhances localized surfactant release from type II cells, but it may also play a role for compensatory endocytosis and other cellular functions.
Collapse
Affiliation(s)
- Pika Miklavc
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Ulm, Germany
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Thomas Haller
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Dietl
- Institute of General Physiology, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|