1
|
Gil-Guevara O, Riveros AJ. Stimulus intensity and temporal configuration interact during bimodal learning and memory in honey bees. PLoS One 2024; 19:e0309129. [PMID: 39361581 PMCID: PMC11449348 DOI: 10.1371/journal.pone.0309129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Multimodal integration is a core neural process with a keen relevance during ecological tasks requiring learning and memory, such as foraging. The benefits of learning multimodal signals imply solving whether the components come from a single event. This challenge presumably depends on the timing and intensity of the stimuli. Here, we used simultaneous and alternate presentations of olfactory and visual stimuli, at low and high intensities, to understand how temporal and intensity variations affect the learning of a bimodal stimulus and its components. We relied on the conditioning of the proboscis extension response (PER) to train honey bees to an appetitive learning task with bimodal stimuli precisely controlled. We trained bees to stimuli with different synchronicity and intensity levels. We found that synchronicity, order of presentation, and intensity significantly impacted the probability of exhibiting conditioned PER responses and the latency of the conditioned responses. At low intensities, synchronous bimodal inputs produced maximal multisensory enhancement, while asynchronous temporal orders led to lower performances. At high intensities, the relative advantage of the synchronous stimulation diminished, and asynchronous stimuli produced similar performances. Memory retention was higher for the olfactory component and bimodal stimuli compared to the visual component, irrespective of the training's temporal configuration. Bees retained the asynchronous bimodal configuration to a lesser extent than the synchronous one, depending on the stimulus intensity. We conclude that time (synchrony), order of presentation, and intensity have interdependent effects on bee learning and memory performance. This suggests caution when assessing the independent effects of each factor.
Collapse
Affiliation(s)
- Oswaldo Gil-Guevara
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Andre J. Riveros
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Department of Neuroscience, College of Science, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Lafon G, Paoli M, Paffhausen BH, Sanchez GDB, Lihoreau M, Avarguès-Weber A, Giurfa M. Efficient visual learning by bumble bees in virtual-reality conditions: Size does not matter. INSECT SCIENCE 2023; 30:1734-1748. [PMID: 36734172 DOI: 10.1111/1744-7917.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Recent developments allowed establishing virtual-reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff-tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations. In doing so, they reduced the latency to make a choice, increased the proportion of direct paths toward the virtual stimuli and walked faster toward them. Performance in a short-term retention test showed that bumble bees chose and fixated longer on the correct stimulus in the absence of reinforcement. Body size and weight, although variable across individuals, did not affect cognitive performances and had a mild impact on motor performances. Overall, we show that bumble bees are suitable experimental subjects for experiments on visual learning under VR conditions, which opens important perspectives for invasive studies on the neural and molecular bases of such learning given the robustness of these insects and the accessibility of their brain.
Collapse
Affiliation(s)
- Gregory Lafon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Marco Paoli
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Benjamin H Paffhausen
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Gabriela de Brito Sanchez
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Mathieu Lihoreau
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
- French Academy of Sciences for University Professors, Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
3
|
Aguiar JMRBV, Nocelli RCF, Giurfa M, Nascimento FS. Neonicotinoid effects on tropical bees: Imidacloprid impairs innate appetitive responsiveness, learning and memory in the stingless bee Melipona quadrifasciata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162859. [PMID: 36933743 DOI: 10.1016/j.scitotenv.2023.162859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Together with other anthropogenic factors, pesticides play a major role in pollinator decline worldwide. Most studies on their influence on pollinators have focused on honey bees given the suitability of this insect for controlled behavioral testing and raising. Yet, studies on pesticide impact should also contemplate tropical species, which contribute a major part of biodiversity and which have remained so far neglected. Here we focused on the stingless bee Melipona quadrifasciata and asked if the widely used neonicotinoid imidacloprid disrupts its learning and memory capabilities. We fed stingless bees with 0.1, 0.5 or 1 ng of imidacloprid, tested their innate appetitive responsiveness and trained them to associate odors and sucrose reward using the olfactory conditioning of the proboscis extension response. The same experiments were performed on Africanized honey bees. One hour after intoxication, both species decreased their innate responsiveness to sucrose but the effect was more accentuated in stingless bees. In both species, learning and memory were affected in a dose-dependent manner. These results indicate that pesticides have dramatic consequences on tropical bee species and claim for rational policies regulating their use in the tropics.
Collapse
Affiliation(s)
| | | | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier - Toulouse III, Toulouse, France; Institut Universitaire de France, Paris, France
| | - Fábio Santos Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Abstract
The ability to see colour at night is known only from a handful of animals. First discovered in the elephant hawk moth Deilephila elpenor, nocturnal colour vision is now known from two other species of hawk moths, a single species of carpenter bee, a nocturnal gecko and two species of anurans. The reason for this rarity—particularly in vertebrates—is the immense challenge of achieving a sufficient visual signal-to-noise ratio to support colour discrimination in dim light. Although no less challenging for nocturnal insects, unique optical and neural adaptations permit reliable colour vision and colour constancy even in starlight. Using the well-studied Deilephila elpenor, we describe the visual light environment at night, the visual challenges that this environment imposes and the adaptations that have evolved to overcome them. We also explain the advantages of colour vision for nocturnal insects and its usefulness in discriminating night-opening flowers. Colour vision is probably widespread in nocturnal insects, particularly pollinators, where it is likely crucial for nocturnal pollination. This relatively poorly understood but vital ecosystem service is threatened from increasingly abundant and spectrally abnormal sources of anthropogenic light pollution, which can disrupt colour vision and thus the discrimination and pollination of flowers. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
Collapse
Affiliation(s)
- Eric Warrant
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
5
|
Guiraud M, Roper M, Wolf S, Woodgate JL, Chittka L. Discrimination of edge orientation by bumblebees. PLoS One 2022; 17:e0263198. [PMID: 35709295 PMCID: PMC9202920 DOI: 10.1371/journal.pone.0263198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
Simple feature detectors in the visual system, such as edge-detectors, are likely to underlie even the most complex visual processing, so understanding the limits of these systems is crucial for a fuller understanding of visual processing. We investigated the ability of bumblebees (Bombus terrestris) to discriminate between differently angled edges. In a multiple-choice, “meadow-like” scenario, bumblebees successfully discriminated between angled bars with 7° differences, significantly exceeding the previously reported performance of eastern honeybees (Apis cerana, limit: 15°). Neither the rate at which bees learned, nor their final discrimination performance were affected by the angular orientation of the training bars, indicating a uniform performance across the visual field. Previous work has found that, in dual-choice tests, eastern honeybees cannot reliably discriminate between angles with less than 25° difference, suggesting that performance in discrimination tasks is affected by the training regime, and doesn’t simply reflect the perceptual limitations of the visual system. We used high resolution LCD monitors to investigate bumblebees’ angular resolution in a dual-choice experiment. Bumblebees could still discriminate 7° angle differences under such conditions (exceeding the previously reported limit for Apis mellifera, of 10°, as well as that of A. cerana). Bees eventually reached similar levels of accuracy in the dual-choice experiment as they did under multiple-choice conditions but required longer learning periods. Bumblebees show impressive abilities to discriminate between angled edges, performing better than two previously tested species of honeybee. This high performance may, in turn, support complex visual processing in the bumblebee brain.
Collapse
Affiliation(s)
- Marie Guiraud
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| | - Mark Roper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Drone Development Lab, Ben Thorns Ltd, Colchester, United Kingdom
| | - Stephan Wolf
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Joseph L. Woodgate
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Thamm M, Wagler K, Brockmann A, Scheiner R. Tyramine 1 Receptor Distribution in the Brain of Corbiculate Bees Points to a Conserved Function. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:13-25. [PMID: 34265763 DOI: 10.1159/000517014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Abstract
Sucrose represents an important carbohydrate source for most bee species. In the Western honeybee (Apis mellifera) it was shown that individual sucrose responsiveness correlates with the task performed in the colony, supporting the response threshold theory which states that individuals with the lowest threshold for a task-associated stimuli will perform the associated task. Tyramine was shown to modulate sucrose responsiveness, most likely via the tyramine 1 receptor. This receptor is located in brain areas important for the processing of gustatory stimuli. We asked whether the spatial expression pattern of the tyramine 1 receptor is a unique adaptation of honeybees or if its expression represents a conserved trait. Using a specific tyramine receptor 1 antibody, we compared the spatial expression of this receptor in the brain of different corbiculate bee species, including eusocial honeybees, bumblebees, stingless bees, and the solitary bee Osmia bicornis as an outgroup. We found a similar labeling pattern in the mushroom bodies, the central complex, the dorsal lobe, and the gnathal ganglia, indicating a conserved receptor expression. With respect to sucrose responsiveness this result is of special importance. We assume that the tyramine 1 receptor expression in these neuropiles provides the basis for modulation of sucrose responsiveness. Furthermore, the tyramine 1 receptor expression seems to be independent of size, as labeling is similar in bee species that differ greatly in their body size. However, the situation in the optic lobes appears to be different. Here, the lobula of stingless bees is clearly labeled by the tyramine receptor 1 antibody, whereas this labeling is absent in other species. This indicates that the regulation of this receptor is different in the optic lobes, while its function in this neuropile remains unclear.
Collapse
Affiliation(s)
- Markus Thamm
- Behavioral Physiology and Sociobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Katharina Wagler
- Behavioral Physiology and Sociobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Varnon CA, Vallely N, Beheler C, Coffin C. The disturbance leg-lift response (DLR): an undescribed behavior in bumble bees. PeerJ 2021; 9:e10997. [PMID: 33828912 PMCID: PMC8005288 DOI: 10.7717/peerj.10997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bumble bees, primarily Bombus impatiens and B. terrestris, are becoming increasingly popular organisms in behavioral ecology and comparative psychology research. Despite growing use in foraging and appetitive conditioning experiments, little attention has been given to innate antipredator responses and their ability to be altered by experience. In this paper, we discuss a primarily undescribed behavior, the disturbance leg-lift response (DLR). When exposed to a presumably threatening stimulus, bumble bees often react by lifting one or multiple legs. We investigated DLR across two experiments. METHODS In our first experiment, we investigated the function of DLR as a prerequisite to later conditioning research. We recorded the occurrence and sequence of DLR, biting and stinging in response to an approaching object that was either presented inside a small, clear apparatus containing a bee, or presented directly outside of the subject's apparatus. In our second experiment, we investigated if DLR could be altered by learning and experience in a similar manner to many other well-known bee behaviors. We specifically investigated habituation learning by repeatedly presenting a mild visual stimulus to samples of captive and wild bees. RESULTS The results of our first experiment show that DLR and other defensive behaviors occur as a looming object approaches, and that the response is greater when proximity to the object is lower. More importantly, we found that DLR usually occurs first, rarely precedes biting, and often precedes stinging. This suggests that DLR may function as a warning signal that a sting will occur. In our second experiment, we found that DLR can be altered as a function of habituation learning in both captive and wild bees, though the captive sample initially responded more. This suggests that DLR may be a suitable response for many other conditioning experiments.
Collapse
Affiliation(s)
- Christopher A. Varnon
- Department of Psychology, Converse College, Spartanburg, SC, United States of America
| | - Noelle Vallely
- Department of Psychology, Converse College, Spartanburg, SC, United States of America
| | - Charlie Beheler
- Department of Psychology, Converse College, Spartanburg, SC, United States of America
| | - Claudia Coffin
- Department of Psychology, Converse College, Spartanburg, SC, United States of America
| |
Collapse
|
8
|
Riveros AJ, Leonard AS, Gronenberg W, Papaj DR. Learning of bimodal versus unimodal signals in restrained bumble bees. J Exp Biol 2020; 223:jeb220103. [PMID: 32321753 DOI: 10.1242/jeb.220103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 01/31/2023]
Abstract
Similar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load for pollinators, impairing performance, or might benefit them by facilitating learning, memory and decision making. Here, we evaluated learning and memory in foragers of the bumble bee Bombus impatiens trained to simple (unimodal) versus complex (bimodal) signals under restrained conditions. Use of a proboscis extension response protocol enabled us to control the timing and duration of stimuli presented during absolute and differential learning tasks. Overall, we observed broad variation in performance under the two conditions, with bees trained to compound bimodal signals learning and remembering as well as, better than or more poorly than bees trained to unimodal signals. Interestingly, the outcome of training was affected by the specific colour-odour combination. Among unimodal stimuli, the performance with odour stimuli was higher than with colour stimuli, suggesting that olfactory signals played a more significant role in the compound bimodal condition. This was supported by the fact that after 24 h, most bimodal-treatment bees responded to odour but not visual stimuli. We did not observe differences in latency of response, suggesting that signal composition affected decision accuracy, not speed. We conclude that restrained bumble bee workers exhibit broad variation of responses to bimodal stimuli and that components of the bimodal signal may not be used equivalently. The analysis of bee performance under restrained conditions enables accurate control of the multimodal stimuli provided to individuals and to study the interaction of individual components within a compound.
Collapse
Affiliation(s)
- Andre J Riveros
- Departamento de Biología, Grupo de Investigaciones CANNON, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Wulfila Gronenberg
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel R Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Smith BH, Cook CN. Experimental psychology meets behavioral ecology: what laboratory studies of learning polymorphisms mean for learning under natural conditions, and vice versa. J Neurogenet 2020; 34:178-183. [PMID: 32024408 DOI: 10.1080/01677063.2020.1718674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Behavior genetics, and specifically the study of learning and memory, has benefitted immensely from the development of powerful forward- and reverse-genetic methods for investigating the relationships between genes and behavior. Application of these methods in controlled laboratory settings has led to insights into gene-behavior relationships. In this perspective article, we argue that the field is now poised to make significant inroads into understanding the adaptive value of heritable variation in behavior in natural populations. Studies of natural variation with several species, in particular, are now in a position to complement laboratory studies of mechanisms, and sometimes this work can lead to counterintuitive insights into the mechanism of gene action on behavior. We make this case using a recent example from work with the honey bee, Apis mellifera.
Collapse
Affiliation(s)
- Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Chelsea N Cook
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
10
|
Becker MC, Rössler W, Strube-Bloss MF. UV-light perception is modulated by the odour element of an olfactory-visual compound in restrained honeybees. J Exp Biol 2019; 222:jeb.201483. [DOI: 10.1242/jeb.201483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022]
Abstract
Honeybees use visual and olfactory cues to detect flowers during foraging trips. Hence, the reward association of a nectar source is a multimodal construct which has at least two major components – olfactory and visual cues. How both sensory modalities are integrated to form a common reward association and whether and how they may interfere, is an open question. The present study used stimulation with UV, blue and green light to evoke distinct photoreceptor activities in the compound eye and two odour components (Geraniol, Citronellol). To test if a compound of both modalities is perceived as the sum of its elements (elemental processing) or as a unique cue (configural processing) we combined monochromatic light with single odour components in positive (PP) and negative patterning (NP) experiments. During PP, the compound of two modalities was rewarded, whereas the single elements were not. For NP, stimuli comprising a single modality were rewarded, whereas the olfactory-visual compound was not. Furthermore, we compared the differentiation abilities between two light stimuli with and without being part of an olfactory-visual compound. Interestingly, the behavioural performances revealed a prominent case of configural processing, but only in those cases when UV light was an element of an olfactory-visual compound. Instead, learning with green- and blue-containing compounds rather supports elemental processing theory.
Collapse
Affiliation(s)
- Mira C. Becker
- Behavioral Physiology & Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology & Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin Fritz Strube-Bloss
- Behavioral Physiology & Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Avarguès-Weber A, Mota T. Advances and limitations of visual conditioning protocols in harnessed bees. ACTA ACUST UNITED AC 2016; 110:107-118. [PMID: 27998810 DOI: 10.1016/j.jphysparis.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Farré-Armengol G, Peñuelas J, Li T, Yli-Pirilä P, Filella I, Llusia J, Blande JD. Ozone degrades floral scent and reduces pollinator attraction to flowers. THE NEW PHYTOLOGIST 2016; 209:152-60. [PMID: 26346807 DOI: 10.1111/nph.13620] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/27/2015] [Indexed: 05/18/2023]
Abstract
In this work we analyzed the degradation of floral scent volatiles from Brassica nigra by reaction with ozone along a distance gradient and the consequences for pollinator attraction. For this purpose we used a reaction system comprising three reaction tubes in which we conducted measurements of floral volatiles using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. We also tested the effects of floral scent degradation on the responses of the generalist pollinator Bombus terrestris. The chemical analyses revealed that supplementing air with ozone led to an increasing reduction in the concentrations of floral volatiles in air with distance from the volatile source. The results revealed different reactivities with ozone for different floral scent constituents, which emphasized that ozone exposure not only degrades floral scents, but also changes the ratios of compounds in a scent blend. Behavioural tests revealed that floral scent was reduced in its attractiveness to pollinators after it had been exposed to 120 ppb O3 over a 4.5 m distance. The combined results of chemical analyses and behavioural responses of pollinators strongly suggest that high ozone concentrations have significant negative impacts on pollination by reducing the distance over which floral olfactory signals can be detected by pollinators.
Collapse
Affiliation(s)
- Gerard Farré-Armengol
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Tao Li
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FIN-70211, Kuopio, Finland
| | - Pasi Yli-Pirilä
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, FIN-70211, Kuopio, Finland
| | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - Joan Llusia
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
| | - James D Blande
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FIN-70211, Kuopio, Finland
| |
Collapse
|
13
|
Boeddeker N, Mertes M, Dittmar L, Egelhaaf M. Bumblebee Homing: The Fine Structure of Head Turning Movements. PLoS One 2015; 10:e0135020. [PMID: 26352836 PMCID: PMC4564262 DOI: 10.1371/journal.pone.0135020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/17/2015] [Indexed: 11/18/2022] Open
Abstract
Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The flight paths consist of almost straight flight segments that are interspersed with rapid turns. These short and fast yaw turns ("saccades") are usually accompanied by even faster head yaw turns that change gaze direction. Since a large part of image rotation is thereby reduced to brief instants of time, this behavioural pattern facilitates depth perception from visual motion parallax during the intersaccadic intervals. The detailed analysis of the fine structure of the bees' head turning movements shows that the time course of single head saccades is very stereotypical. We find a consistent relationship between the duration, peak velocity and amplitude of saccadic head movements, which in its main characteristics resembles the so-called "saccadic main sequence" in humans. The fact that bumblebee head saccades are highly stereotyped as in humans, may hint at a common principle, where fast and precise motor control is used to reliably reduce the time during which the retinal images moves.
Collapse
Affiliation(s)
- Norbert Boeddeker
- Department of Neurobiology & Center of Excellence ‘Cognitive Interaction Technology’ (CITEC), Bielefeld University, Bielefeld, Germany
- Department of Cognitive Neurosciences & Center of Excellence ‘Cognitive Interaction Technology’ (CITEC), Bielefeld University, Bielefeld, Germany
| | - Marcel Mertes
- Department of Neurobiology & Center of Excellence ‘Cognitive Interaction Technology’ (CITEC), Bielefeld University, Bielefeld, Germany
| | - Laura Dittmar
- Department of Neurobiology & Center of Excellence ‘Cognitive Interaction Technology’ (CITEC), Bielefeld University, Bielefeld, Germany
| | - Martin Egelhaaf
- Department of Neurobiology & Center of Excellence ‘Cognitive Interaction Technology’ (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
14
|
Honeypot visitation enables scent learning and heightens forager response in bumblebees (Bombus impatiens). LEARNING AND MOTIVATION 2015. [DOI: 10.1016/j.lmot.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Motion cues improve the performance of harnessed bees in a colour learning task. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:505-11. [PMID: 25739517 DOI: 10.1007/s00359-015-0994-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
The proboscis extension conditioning (PER) is a successful behavioural paradigm for studying sensory and learning mechanisms in bees. Whilst mainly used with olfactory and tactile stimuli, more recently reliable PER conditioning has been achieved with visual stimuli such as colours and looming stripes. However, the results reported in different studies vary quite strongly, and it remains controversially discussed how to best condition visual PER. It is particularly striking that visual PER leads to more limited performance as compared to visual conditioning of free-flying bees. It could be that visual PER learning is affected by the lack of movement and that the presence of visual motion cues could compensate for it. We tested whether bees would show differences in learning performances when conditioned either with a colour and motion stimulus in combination or with colour alone. Colour acquisition was improved in the presence of the motion stimulus. The result is consistent with the idea that visual learning might be tightly linked to movement in bees, given that they use vision predominantly during flight. Our results further confirm recent findings that successful visual PER conditioning in bees is achievable without obligatorily removing the antennae.
Collapse
|
16
|
|
17
|
Avarguès-Weber A, Chittka L. Local enhancement or stimulus enhancement? Bumblebee social learning results in a specific pattern of flower preference. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Dylla KV, Galili DS, Szyszka P, Lüdke A. Trace conditioning in insects-keep the trace! Front Physiol 2013; 4:67. [PMID: 23986710 PMCID: PMC3750952 DOI: 10.3389/fphys.2013.00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/17/2013] [Indexed: 11/13/2022] Open
Abstract
Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination-a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning.
Collapse
Affiliation(s)
- Kristina V. Dylla
- Department of Biology, Neurobiology, University of KonstanzKonstanz, Germany
| | - Dana S. Galili
- Behavioral Genetics, Max-Planck Institute for NeurobiologyMartinsried, Germany
| | - Paul Szyszka
- Department of Biology, Neurobiology, University of KonstanzKonstanz, Germany
| | - Alja Lüdke
- Department of Biology, Neurobiology, University of KonstanzKonstanz, Germany
| |
Collapse
|
19
|
Riveros AJ, Gronenberg W. Decision-making and associative color learning in harnessed bumblebees (Bombus impatiens). Anim Cogn 2012; 15:1183-93. [PMID: 22837045 DOI: 10.1007/s10071-012-0542-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/24/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
In honeybees, the conditioning of the proboscis extension response (PER) has provided a powerful tool to explore the mechanisms underlying olfactory learning and memory. Unfortunately, PER conditioning does not work well for visual stimuli in intact honeybees, and performance is improved only after antennal amputation, thus limiting the analysis of visual learning and multimodal integration. Here, we study visual learning using the PER protocol in harnessed bumblebees, which exhibit high levels of odor learning under restrained conditions. We trained bumblebees in a differential task in which two colors differed in their rewarding values. We recorded learning performance as well as response latency and accuracy. Bumblebees rapidly learned the task and discriminated the colors within the first two trials. However, performance varied between combinations of colors and was higher when blue or violet was associated with a high reward. Overall, accuracy and speed were negatively associated, but both components increased during acquisition. We conclude that PER conditioning is a good tool to study visual learning, using Bombus impatiens as a model, opening new possibilities to analyze the proximate mechanisms of visual learning and memory, as well as the process of multimodal integration and decision-making.
Collapse
Affiliation(s)
- Andre J Riveros
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
20
|
Dobrin SE, Fahrbach SE. Visual associative learning in restrained honey bees with intact antennae. PLoS One 2012; 7:e37666. [PMID: 22701575 PMCID: PMC3368934 DOI: 10.1371/journal.pone.0037666] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/27/2012] [Indexed: 11/19/2022] Open
Abstract
A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER). Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee.
Collapse
Affiliation(s)
- Scott E Dobrin
- Neuroscience Program, Wake Forest University Graduate School of Arts and Sciences, Winston-Salem, North Carolina, United States of America.
| | | |
Collapse
|
21
|
Dyhr JP, Higgins CM. The spatial frequency tuning of optic-flow-dependent behaviors in the bumblebee Bombus impatiens. ACTA ACUST UNITED AC 2010; 213:1643-50. [PMID: 20435814 DOI: 10.1242/jeb.041426] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insects use visual estimates of flight speed for a variety of behaviors, including visual navigation, odometry, grazing landings and flight speed control, but the neuronal mechanisms underlying speed detection remain unknown. Although many models and theories have been proposed for how the brain extracts the angular speed of the retinal image, termed optic flow, we lack the detailed electrophysiological and behavioral data necessary to conclusively support any one model. One key property by which different models of motion detection can be differentiated is their spatiotemporal frequency tuning. Numerous studies have suggested that optic-flow-dependent behaviors are largely insensitive to the spatial frequency of a visual stimulus, but they have sampled only a narrow range of spatial frequencies, have not always used narrowband stimuli, and have yielded slightly different results between studies based on the behaviors being investigated. In this study, we present a detailed analysis of the spatial frequency dependence of the centering response in the bumblebee Bombus impatiens using sinusoidal and square wave patterns.
Collapse
Affiliation(s)
- Jonathan P Dyhr
- Graduate Program in Neuroscience, The University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA.
| | | |
Collapse
|
22
|
Riveros AJ, Gronenberg W. Brain allometry and neural plasticity in the bumblebee Bombus occidentalis. BRAIN, BEHAVIOR AND EVOLUTION 2010; 75:138-48. [PMID: 20516659 DOI: 10.1159/000306506] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/22/2009] [Indexed: 11/19/2022]
Abstract
Brain plasticity is a common phenomenon across animals and in many cases it is associated with behavioral transitions. In social insects, such as bees, wasps and ants, plasticity in a particular brain compartment involved in multisensory integration (the mushroom body) has been associated with transitions between tasks differing in cognitive demands. However, in most of these cases, transitions between tasks are age-related, requiring the experimental manipulation of the age structure in the studied colonies to distinguish age and experience-dependent effects. To better understand the interplay between brain plasticity and behavioral performance it would therefore be advantageous to study species whose division of labor is not age-dependent. Here, we focus on brain plasticity in the bumblebee Bombus occidentalis, in which division of labor is strongly affected by the individual's body size instead of age. We show that, like in vertebrates, body size strongly correlates with brain size. We also show that foraging experience, but not age, significantly correlates with the increase in the size of the mushroom body, and in particular one of its components, the medial calyx. Our results support previous findings from other social insects suggesting that the mushroom body plays a key role in experience-based decision making. We also discuss the use of bumblebees as models to analyze neural plasticity and the association between brain size and behavioral performance.
Collapse
Affiliation(s)
- Andre J Riveros
- Center for Insect Science and Department of Neuroscience, The University of Arizona, Tucson, Ariz. 85721-0077, USA.
| | | |
Collapse
|