Svetec N, Zhao L, Saelao P, Chiu JC, Begun DJ. Evidence that natural selection maintains genetic variation for sleep in Drosophila melanogaster.
BMC Evol Biol 2015;
15:41. [PMID:
25887180 PMCID:
PMC4374177 DOI:
10.1186/s12862-015-0316-2]
[Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background
Drosophila melanogaster often shows correlations between latitude and phenotypic or genetic variation on different continents, which suggests local adaptation with respect to a heterogeneous environment. Previous phenotypic analyses of latitudinal clines have investigated mainly physiological, morphological, or life-history traits. Here, we studied latitudinal variation in sleep in D. melanogaster populations from North and Central America. In parallel, we used RNA-seq to identify interpopulation gene expression differences.
Results
We found that in D. melanogaster the average nighttime sleep bout duration exhibits a latitudinal cline such that sleep bouts of equatorial populations are roughly twice as long as those of temperate populations. Interestingly, this pattern of latitudinal variation is not observed for any daytime measure of activity or sleep. We also found evidence for geographic variation for sunrise anticipation. Our RNA-seq experiment carried out on heads from a low and high latitude population identified a large number of gene expression differences, most of which were time dependent. Differentially expressed genes were enriched in circadian regulated genes and enriched in genes potentially under spatially varying selection.
Conclusion
Our results are consistent with a mechanistic and selective decoupling of nighttime and daytime activity. Furthermore, the present study suggests that natural selection plays a major role in generating transcriptomic variation associated with circadian behaviors. Finally, we identified genomic variants plausibly causally associated with the observed behavioral and transcriptomic variation.
Electronic supplementary material
The online version of this article (doi:10.1186/s12862-015-0316-2) contains supplementary material, which is available to authorized users.
Collapse