1
|
Gabrielaitis D, Zitkute V, Saveikyte L, Labutyte G, Skapas M, Meskys R, Casaite V, Sasnauskiene A, Neniskyte U. Nanotubes from bacteriophage tail sheath proteins: internalisation by cancer cells and macrophages. NANOSCALE ADVANCES 2023; 5:3705-3716. [PMID: 37441259 PMCID: PMC10334369 DOI: 10.1039/d3na00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023]
Abstract
Bionanoparticles comprised of naturally occurring monomers are gaining interest in the development of novel drug transportation systems. Here we report on the stabilisation, cellular uptake, and macrophage clearance of nanotubes formed from the self-assembling gp053 tail sheath protein of the vB_EcoM_FV3 bacteriophage. To evaluate the potential of the bacteriophage protein-based nanotubes as therapeutic nanocarriers, we investigated their internalisation into colorectal cancer cell lines and professional macrophages that may hinder therapeutic applications by clearing nanotube carriers. We fused the bacteriophage protein with a SNAP-tag self-labelling enzyme and demonstrated that its activity is retained in assembled nanotubes, indicating that such carriers can be applied to deliver therapeutic biomolecules. Under physiological conditions, the stabilisation of the nanotubes by PEGylation was required to prevent aggregation and yield a stable solution with uniform nano-sized structures. Colorectal carcinoma cells from primary and metastatic tumours internalized SNAP-tag-carrying nanotubes with different efficiencies. The nanotubes entered HCT116 cells via dynamin-dependent and SW480 cells - via dynamin- and clathrin-dependent pathways and were accumulated in lysosomes. Meanwhile, peritoneal macrophages phagocytosed the nanotubes in a highly efficient manner through actin-dependent mechanisms. Macrophage clearance of nanotubes was enhanced by inflammatory activation but was dampened in macrophages isolated from aged animals. Altogether, our results demonstrate that gp053 nanotubes retained the cargo's enzymatic activity post-assembly and had the capacity to enter cancer cells. Furthermore, we emphasise the importance of evaluating the nanocarrier clearance by immune cells under conditions mimicking a cancerous environment.
Collapse
Affiliation(s)
- Dovydas Gabrielaitis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vilmante Zitkute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Lina Saveikyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Greta Labutyte
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Martynas Skapas
- Institute of Biotechnology, Vilnius University Vilnius Lithuania
| | - Rolandas Meskys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vida Casaite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Ausra Sasnauskiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Urte Neniskyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
- VU-EMBL Partnership Institute, Vilnius University Vilnius Lithuania
| |
Collapse
|
2
|
Chowkwale M, Mahler GJ, Huang P, Murray BT. A multiscale in silico model of endothelial to mesenchymal transformation in a tumor microenvironment. J Theor Biol 2019; 480:229-240. [PMID: 31430445 DOI: 10.1016/j.jtbi.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Endothelial to mesenchymal transformation (EndMT) is a process in which endothelial cells gain a mesenchymal-like phenotype in response to mechanobiological signals that results in the remodeling or repair of underlying tissue. While initially associated with embryonic development, this process has since been shown to occur in adult tissue remodeling including wound healing, fibrosis, and cancer. In an attempt to understand the role of EndMT in cancer progression and metastasis, we present a multiscale, three-dimensional, in silico model. The model couples tissue level phenomena such as extracellular matrix remodeling, cellular level phenomena such as migration and proliferation, and chemical transport in the tumor microenvironment to mimic in vitro tissue models of the cancer microenvironment. The model is used to study the presence of EndMT-derived activated fibroblasts (EDAFs) and varying substrate stiffness on tumor cell migration and proliferation. The simulations accurately model the behavior of tumor cells under given conditions. The presence of EDAFs and/or an increase in substrate stiffness resulted in an increase in tumor cell activity. This model lays the foundation of further studies of EDAFs in a tumor microenvironment on a cellular and subcellular physiological level.
Collapse
Affiliation(s)
- M Chowkwale
- Department of Biomedical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - G J Mahler
- Department of Biomedical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - P Huang
- Department of Mechanical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - B T Murray
- Department of Mechanical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA.
| |
Collapse
|
3
|
Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor Rev 2016; 32:63-73. [DOI: 10.1016/j.cytogfr.2016.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
|
4
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
5
|
Ruan W, Srinivasan A, Lin S, Kara KI, Barker PA. Eiger-induced cell death relies on Rac1-dependent endocytosis. Cell Death Dis 2016; 7:e2181. [PMID: 27054336 PMCID: PMC4855659 DOI: 10.1038/cddis.2016.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
Signaling via tumor necrosis factor receptor (TNFR) superfamily members regulates cellular life and death decisions. A subset of mammalian TNFR proteins, most notably the p75 neurotrophin receptor (p75NTR), induces cell death through a pathway that requires activation of c-Jun N-terminal kinases (JNKs). However the receptor-proximal signaling events that mediate this remain unclear. Drosophila express a single tumor necrosis factor (TNF) ligand termed Eiger (Egr) that activates JNK-dependent cell death. We have exploited this model to identify phylogenetically conserved signaling events that allow Egr to induce JNK activation and cell death in vivo. Here we report that Rac1, a small GTPase, is specifically required in Egr-mediated cell death. rac1 loss of function blocks Egr-induced cell death, whereas Rac1 overexpression enhances Egr-induced killing. We identify Vav as a GEF for Rac1 in this pathway and demonstrate that dLRRK functions as a negative regulator of Rac1 that normally acts to constrain Egr-induced death. Thus dLRRK loss of function increases Egr-induced cell death in the fly. We further show that Rac1-dependent entry of Egr into early endosomes is a crucial prerequisite for JNK activation and for cell death and show that this entry requires the activity of Rab21 and Rab7. These findings reveal novel regulatory mechanisms that allow Rac1 to contribute to Egr-induced JNK activation and cell death.
Collapse
Affiliation(s)
- W Ruan
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - A Srinivasan
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S Lin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - k-I Kara
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - P A Barker
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Biology, The University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
6
|
Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy. Cell Signal 2015; 27:2389-400. [PMID: 26363466 DOI: 10.1016/j.cellsig.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 01/04/2023]
Abstract
Phosphatidylinositol-3-kinase (PI3K) is a key regulator of diverse biological processes including cell proliferation, migration, survival, and differentiation. While a role of PI3K in chondrocyte differentiation has been suggested, its precise mechanisms of action are poorly understood. Here we show that PI3K signaling can down-regulate Nkx3.2 at both mRNA and protein levels in various chondrocyte cultures in vitro. In addition, we have intriguingly found that p85β, not p85α, is specifically employed as a regulatory subunit for PI3K-mediated Nkx3.2 suppression. Furthermore, we found that regulation of Nkx3.2 by PI3K requires Rac1-PAK1, but not Akt, signaling downstream of PI3K. Finally, using embryonic limb bud cultures, ex vivo long bone cultures, and p85β knockout mice, we demonstrated that PI3K-mediated suppression of Nkx3.2 in chondrocytes plays a role in the control of cartilage hypertrophy during skeletal development in vertebrates.
Collapse
|
7
|
Basquin C, Trichet M, Vihinen H, Malardé V, Lagache T, Ripoll L, Jokitalo E, Olivo-Marin JC, Gautreau A, Sauvonnet N. Membrane protrusion powers clathrin-independent endocytosis of interleukin-2 receptor. EMBO J 2015; 34:2147-61. [PMID: 26124312 PMCID: PMC4557667 DOI: 10.15252/embj.201490788] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022] Open
Abstract
Endocytosis controls many functions including nutrient uptake, cell division, migration and signal transduction. A clathrin- and caveolin-independent endocytosis pathway is used by important physiological cargos, including interleukin-2 receptors (IL-2R). However, this process lacks morphological and dynamic data. Our electron microscopy (EM) and tomography studies reveal that IL-2R-pits and vesicles are initiated at the base of protrusions. We identify the WAVE complex as a specific endocytic actor. The WAVE complex interacts with IL-2R, via a WAVE-interacting receptor sequence (WIRS) present in the receptor polypeptide, and allows for receptor clustering close to membrane protrusions. In addition, using total internal reflection fluorescent microscopy (TIRF) and automated analysis we demonstrate that two timely distinct bursts of actin polymerization are required during IL-2R uptake, promoted first by the WAVE complex and then by N-WASP. Finally, our data reveal that dynamin acts as a transition controller for the recruitment of Arp2/3 activators required for IL-2R endocytosis. Altogether, our work identifies the spatio-temporal specific role of factors initiating clathrin-independent endocytosis by a unique mechanism that does not depend on the deformation of a flat membrane, but rather on that of membrane protrusions.
Collapse
Affiliation(s)
- Cyril Basquin
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Michaël Trichet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut de Biologie Paris-Seine (IBPS), FR3631, Electron Microscopy Facility, Paris, France
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Valérie Malardé
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Thibault Lagache
- CNRS UMR3691, Paris, France Unité d'Analyse d'Images Biologiques, Institut Pasteur, Paris, France
| | - Léa Ripoll
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Alexis Gautreau
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654 Ecole Polytechnique Centre, National de la Recherche Scientifique, Palaiseau, France
| | - Nathalie Sauvonnet
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| |
Collapse
|
8
|
Sun BO, Fang Y, Li Z, Chen Z, Xiang J. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomed Rep 2015; 3:603-610. [PMID: 26405532 DOI: 10.3892/br.2015.494] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, cancer metastases remain a major clinical problem that highlights the importance of recognition of the metastatic process in cancer diagnosis and treatment. A critical process associated with the metastasis process is the transformation of epithelial cells toward the motile mesenchymal state, a process called epithelial-mesenchymal transition (EMT). Increasing evidence suggests the crucial role of the cytoskeleton in the EMT process. The cytoskeleton is composed of the actin cytoskeleton, the microtubule network and the intermediate filaments that provide structural design and mechanical strength that is necessary for the EMT. The dynamic reorganization of the actin cytoskeleton is a prerequisite for the morphology, migration and invasion of cancer cells. The microtubule network is the cytoskeleton that provides the driving force during cell migration. Intermediate filaments are significantly rearranged, typically switching from cytokeratin-rich to vimentin-rich networks during the EMT process, accompanied by a greatly enhanced cell motility capacity. In the present review, the recent novel insights into the different cytoskeleton underlying EMT are summarized. There are numerous advances in our understanding of the fundamental role of the cytoskeleton in cancer cell invasion and migration.
Collapse
Affiliation(s)
- B O Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yantian Fang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhenyang Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|