1
|
Cao M, Day AM, Galler M, Latimer HR, Byrne DP, Foy TW, Dwyer E, Bennett E, Palmer J, Morgan BA, Eyers PA, Veal EA. A peroxiredoxin-P38 MAPK scaffold increases MAPK activity by MAP3K-independent mechanisms. Mol Cell 2023; 83:3140-3154.e7. [PMID: 37572670 DOI: 10.1016/j.molcel.2023.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/19/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Min Cao
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alison M Day
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Galler
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Heather R Latimer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Thomas W Foy
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emilia Dwyer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Elise Bennett
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy Palmer
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Brian A Morgan
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Elizabeth A Veal
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
2
|
Sjölander JJ, Tarczykowska A, Picazo C, Cossio I, Redwan IN, Gao C, Solano C, Toledano MB, Grøtli M, Molin M, Sunnerhagen P. A Redox-Sensitive Thiol in Wis1 Modulates the Fission Yeast Mitogen-Activated Protein Kinase Response to H 2O 2 and Is the Target of a Small Molecule. Mol Cell Biol 2020; 40:e00346-19. [PMID: 31932483 PMCID: PMC7076255 DOI: 10.1128/mcb.00346-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/23/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidation of a highly conserved cysteine (Cys) residue located in the kinase activation loop of mitogen-activated protein kinase kinases (MAPKK) inactivates mammalian MKK6. This residue is conserved in the fission yeast Schizosaccharomyces pombe MAPKK Wis1, which belongs to the H2O2-responsive MAPK Sty1 pathway. Here, we show that H2O2 reversibly inactivates Wis1 through this residue (C458) in vitro We found that C458 is oxidized in vivo and that serine replacement of this residue significantly enhances Wis1 activation upon addition of H2O2 The allosteric MAPKK inhibitor INR119, which binds in a pocket next to the activation loop and C458, prevented the inhibition of Wis1 by H2O2in vitro and significantly increased Wis1 activation by low levels of H2O2in vivo We propose that oxidation of C458 inhibits Wis1 and that INR119 cancels out this inhibitory effect by binding close to this residue. Kinase inhibition through the oxidation of a conserved Cys residue in MKK6 (C196) is thus conserved in the S. pombe MAPKK Wis1.
Collapse
Affiliation(s)
- Johanna J Sjölander
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Agata Tarczykowska
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Cecilia Picazo
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Itziar Cossio
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Itedale Namro Redwan
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Chunxia Gao
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Carlos Solano
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Michel B Toledano
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit, CEA Saclay, Gif-sur-Yvette, France
| | - Morten Grøtli
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| | - Mikael Molin
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Per Sunnerhagen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, Sweden
| |
Collapse
|
3
|
Salas-Delgado G, Ongay-Larios L, Kawasaki-Watanabe L, López-Villaseñor I, Coria R. The yeasts phosphorelay systems: a comparative view. World J Microbiol Biotechnol 2017; 33:111. [PMID: 28470426 DOI: 10.1007/s11274-017-2272-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/25/2017] [Indexed: 12/23/2022]
Abstract
Cells contain signal transduction pathways that mediate communication between the extracellular environment and the cell interior. These pathways control transcriptional programs and posttranscriptional processes that modify cell metabolism in order to maintain homeostasis. One type of these signal transduction systems are the so-called Two Component Systems (TCS), which conduct the transfer of phosphate groups between specific and conserved histidine and aspartate residues present in at least two proteins; the first protein is a sensor kinase which autophosphorylates a histidine residue in response to a stimulus, this phosphate is then transferred to an aspartic residue located in a response regulator protein. There are classical and hybrid TCS, whose difference consists in the number of proteins and functional domains involved in the phosphorelay. The TCS are widespread in bacteria where the sensor and its response regulator are mostly specific for a given stimulus. In eukaryotic organisms such as fungi, slime molds, and plants, TCS are present as hybrid multistep phosphorelays, with a variety of arrangements (Stock et al. in Annu Rev Biochem 69:183-215, 2000; Wuichet et al. in Curr Opin Microbiol 292:1039-1050, 2010). In these multistep phosphorelay systems, several phosphotransfer events take place between different histidine and aspartate residues localized in specific domains present in more than two proteins (Thomason and Kay, in J Cell Sci 113:3141-3150, 2000; Robinson et al. in Nat Struct Biol 7:626-633, 2000). This review presents a brief and succinct description of the Two-component systems of model yeasts, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Cryptococcus neoformans and Kluyveromyces lactis. We have focused on the comparison of domain organization and functions of each component present in these phosphorelay systems.
Collapse
Affiliation(s)
- Griselda Salas-Delgado
- Departamento de Genética Molecular, Instituto de FisiologíaCelular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Laura Kawasaki-Watanabe
- Departamento de Genética Molecular, Instituto de FisiologíaCelular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Roberto Coria
- Departamento de Genética Molecular, Instituto de FisiologíaCelular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México.
| |
Collapse
|
4
|
Amaro TMMM, Thilliez GJA, Motion GB, Huitema E. A Perspective on CRN Proteins in the Genomics Age: Evolution, Classification, Delivery and Function Revisited. FRONTIERS IN PLANT SCIENCE 2017; 8:99. [PMID: 28217133 PMCID: PMC5289972 DOI: 10.3389/fpls.2017.00099] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
Plant associated microbes rely on secreted virulence factors (effectors) to modulate host immunity and ensure progressive infection. Amongst the secreted protein repertoires defined and studied in pathogens to date, the CRNs (for CRinkling and Necrosis) have emerged as one of only a few highly conserved protein families, spread across several kingdoms. CRN proteins were first identified in plant pathogenic oomycetes where they were found to be modular factors that are secreted and translocated inside host cells by means of a conserved N-terminal domain. Subsequent localization and functional studies have led to the view that CRN C-termini execute their presumed effector function in the host nucleus, targeting processes required for immunity. These findings have led to great interest in this large protein family and driven the identification of additional CRN-like proteins in other organisms. The identification of CRN proteins and subsequent functional studies have markedly increased the number of candidate CRN protein sequences, expanded the range of phenotypes tentatively associated with function and revealed some of their molecular functions toward virulence. The increased number of characterized CRNs also has presented a set of challenges that may impede significant progress in the future. Here, we summarize our current understanding of the CRNs and re-assess some basic assumptions regarding this protein family. We will discuss the latest findings on CRN biology and highlight exciting new hypotheses that have emanated from the field. Finally, we will discuss new approaches to study CRN functions that would lead to a better understanding of CRN effector biology as well as the processes that lead to host susceptibility and immunity.
Collapse
Affiliation(s)
- Tiago M. M. M. Amaro
- Division of Plant Sciences, University of DundeeDundee, UK
- Dundee Effector ConsortiumDundee, UK
| | - Gaëtan J. A. Thilliez
- Division of Plant Sciences, University of DundeeDundee, UK
- Dundee Effector ConsortiumDundee, UK
- Cell and Molecular Sciences, The James Hutton InstituteInvergowrie, UK
| | - Graham B. Motion
- Division of Plant Sciences, University of DundeeDundee, UK
- Dundee Effector ConsortiumDundee, UK
| | - Edgar Huitema
- Division of Plant Sciences, University of DundeeDundee, UK
- Dundee Effector ConsortiumDundee, UK
| |
Collapse
|
5
|
Stress sensitivity of a fission yeast strain lacking histidine kinases is rescued by the ectopic expression of Chk1 from Candida albicans. Curr Genet 2016; 63:343-357. [PMID: 27613427 PMCID: PMC5383687 DOI: 10.1007/s00294-016-0644-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/07/2023]
Abstract
The development of new drugs against the pathogenic yeast Candida albicans is compelling and the evolution of relevant bioassays is important to achieve this goal. Promising drug targets are proteins that lack human counterparts which are true for the His-to-Asp phosphorelay signal transduction systems, important for stress sensing in bacteria, fungi, and plants. In the pathogenic yeast, Candida albicans, the CaChk1 histidine kinase is a trigger of the pathway that leads to a switch from yeast to hyphal growth necessary for invasion. Intriguingly, the model yeast Schizosaccharomyces pombe has a similar phosphorelay system, with three histidine kinases named Mak1, Mak2, and Mak3, which are important for the prevention of aberrant mating and sporulation on rich media. This study uncovered distinct functions for the three histidine kinases; Mak1 alone or Mak2 and Mak3 together were sufficient for the repression of the meiotic cycle when nutrients were available. Moreover, strains lacking histidine kinase genes were sensitive to various types of stress conditions in an auxotrophic strain background, while the stress sensitivity was lost in prototrophic strains. Finally, the stress sensitivity of a S. pombe strain that lacks endogenous histidine kinases could be complemented by the ectopic expression of the CaChk1 histidine kinase from C. albicans. This finding opens up for the possibility to perform a drug screen with a biological read-out in S. pombe to find inhibitors of CaChk1.
Collapse
|
6
|
Zhang D, Burroughs AM, Vidal ND, Iyer LM, Aravind L. Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. Nucleic Acids Res 2016; 44:3513-33. [PMID: 27060143 PMCID: PMC4857004 DOI: 10.1093/nar/gkw221] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/22/2016] [Indexed: 01/13/2023] Open
Abstract
Enzymatic effectors targeting nucleic acids, proteins and other cellular components are the mainstay of conflicts across life forms. Using comparative genomics we identify a large class of eukaryotic proteins, which include effectors from oomycetes, fungi and other parasites. The majority of these proteins have a characteristic domain architecture with one of several N-terminal 'Header' domains, which are predicted to play a role in trafficking of these effectors, including a novel version of the Ubiquitin fold. The Headers are followed by one or more diverse C-terminal domains, such as restriction endonuclease (REase), protein kinase, HNH endonuclease, LK-nuclease (a RNase) and multiple distinct peptidase domains, which are predicted to carry their toxicity determinants. The most common types of these proteins appear to have originated from prokaryotic transposases (e.g. TN7 and Mu) and combine a CDC6/ORC1-STAND clade NTPase domain with a C-terminal REase domain. Other than the so-called Crinkler effectors of oomycetes and fungi, these effectors are encoded by other eukaryotic parasites such as trypanosomatids (the RHS proteins) and the rhizarian Plasmodiophora, and symbionts like Capsaspora Remarkably, we also find these proteins in free-living eukaryotes, including several viridiplantae, fungi, amoebozoans and animals. These versions might either still be transposons or function in other poorly understood eukaryote-specific inter-organismal and inter-genomic conflicts. These include the Medea1 selfish element of Tribolium that spreads via post-zygotic killing. We present a unified mechanism for the recombination-dependent diversification and action of this widespread class of molecular weaponry deployed across diverse conflicts ranging from parasitic to free-living forms.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Newton D Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
7
|
Mechanics and morphogenesis of fission yeast cells. Curr Opin Microbiol 2015; 28:36-45. [PMID: 26291501 DOI: 10.1016/j.mib.2015.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell.
Collapse
|
8
|
Hu L, Fang Y, Hayafuji T, Ma Y, Furuyashiki T. Azoles activate Atf1-mediated transcription through MAP kinase pathway for antifungal effects in fission yeast. Genes Cells 2015; 20:695-705. [PMID: 26108447 DOI: 10.1111/gtc.12263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/16/2015] [Indexed: 11/29/2022]
Abstract
Azole antifungals directly inhibit enzymes for ergosterol biosynthesis, and this direct action is thought to underlie antifungal actions of these drugs. Recent studies showed that azoles alter expression of genes for various cellular functions. However, transcription factors regulated by azoles and their roles in antifungal actions remain poorly characterized. Using luciferase assay, we found that miconazole increased luciferase activity under the promoter containing the cAMP response element (CRE) motif. This azole-induced activation of CRE reporter was abolished in Atf1-deficient cells, suggesting that azoles induce Atf1 activation. As Atf1 is activated by stress-activated MAP kinase Sty1 upon various stressors, we examined its involvement. Azoles increased phosphorylation of Sty1 for its activation, and Sty1 deletion impaired azole-induced CRE reporter activation. In contrast, deletion of Pyp1, a tyrosine phosphatase which negatively regulates Sty1, increased CRE reporter activation. In addition, cells deficient in Atf1 and stress-activated MAP kinase pathway showed resistance to azoles, whereas cells lacking Pyp1 increased azole susceptibility, suggesting a critical role for azole-induced activation of MAP kinase-Atf1 pathway in antifungal actions of azoles. Collectively, these results suggest that azoles activate stress-activated MAP kinase pathway, thereby facilitating Atf1-mediated transcription for antifungal effects.
Collapse
Affiliation(s)
- Lingling Hu
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yue Fang
- Department of Biopharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Tsutomu Hayafuji
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yan Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| |
Collapse
|