1
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. What can reactive oxygen species (ROS) tell us about the action mechanism of herbicides and other phytotoxins? Free Radic Biol Med 2024; 220:92-110. [PMID: 38663829 DOI: 10.1016/j.freeradbiomed.2024.04.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins. The commercial value of many synthetic herbicides is based on weed death as result of oxidative stress, and for a number of them, the site and the mechanism of ROS production have been characterized. This review summarizes the current knowledge on ROS production in plants subjected to different groups of synthetic herbicides and natural phytotoxins. We suggest that the use of ROS-specific fluorescent probes and of ROS-specific marker genes can provide important information on the mechanism of action of these toxins. Furthermore, we propose that, apart from oxidative damage, elicitation of ROS-induced PCD is emerging as one of the important processes underlying the action of herbicides and phytotoxins.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia; Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Saint Petersburg, 196608, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia.
| |
Collapse
|
2
|
Ghitti E, Rolli E, Crotti E, Borin S. Flavonoids Are Intra- and Inter-Kingdom Modulator Signals. Microorganisms 2022; 10:microorganisms10122479. [PMID: 36557733 PMCID: PMC9781135 DOI: 10.3390/microorganisms10122479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.
Collapse
|
3
|
Sato K, Saito S, Endo K, Kono M, Kakei T, Taketa H, Kato M, Hamamoto S, Grenzi M, Costa A, Munemasa S, Murata Y, Ishimaru Y, Uozumi N. Green Tea Catechins, (-)-Catechin Gallate, and (-)-Gallocatechin Gallate are Potent Inhibitors of ABA-Induced Stomatal Closure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201403. [PMID: 35524639 PMCID: PMC9313475 DOI: 10.1002/advs.202201403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Indexed: 06/04/2023]
Abstract
Stomatal movement is indispensable for plant growth and survival in response to environmental stimuli. Cytosolic Ca2+ elevation plays a crucial role in ABA-induced stomatal closure during drought stress; however, to what extent the Ca2+ movement across the plasma membrane from the apoplast to the cytosol contributes to this process still needs clarification. Here the authors identify (-)-catechin gallate (CG) and (-)-gallocatechin gallate (GCG), components of green tea, as inhibitors of voltage-dependent K+ channels which regulate K+ fluxes in Arabidopsis thaliana guard cells. In Arabidopsis guard cells CG/GCG prevent ABA-induced: i) membrane depolarization; ii) activation of Ca2+ permeable cation (ICa ) channels; and iii) cytosolic Ca2+ transients. In whole Arabidopsis plants co-treatment with CG/GCG and ABA suppressed ABA-induced stomatal closure and surface temperature increase. Similar to ABA, CG/GCG inhibited stomatal closure is elicited by the elicitor peptide, flg22 but has no impact on dark-induced stomatal closure or light- and fusicoccin-induced stomatal opening, suggesting that the inhibitory effect of CG/GCG is associated with Ca2+ -related signaling pathways. This study further supports the crucial role of ICa channels of the plasma membrane in ABA-induced stomatal closure. Moreover, CG and GCG represent a new tool for the study of abiotic or biotic stress-induced signal transduction pathways.
Collapse
Affiliation(s)
- Kanane Sato
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Shunya Saito
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Kohsuke Endo
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Masaru Kono
- Department of BiologyGraduate School of ScienceUniversity of TokyoBunkyo‐ku113‐0033Japan
| | - Taishin Kakei
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Haruka Taketa
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Megumi Kato
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Shin Hamamoto
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Matteo Grenzi
- Department of BiosciencesUniversity of MilanVia G. Celoria 26Milan20133Italy
| | - Alex Costa
- Department of BiosciencesUniversity of MilanVia G. Celoria 26Milan20133Italy
- Institute of BiophysicsNational Research Council of Italy (CNR)Via G. Celoria 26Milan20133Italy
| | - Shintaro Munemasa
- Graduate School of Environmental and Life ScienceOkayama UniversityTsushimaOkayama700‐8530Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life ScienceOkayama UniversityTsushimaOkayama700‐8530Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| |
Collapse
|
4
|
Kubicova L, Bachmann G, Weckwerth W, Chobot V. (±)-Catechin-A Mass-Spectrometry-Based Exploration Coordination Complex Formation with Fe II and Fe III. Cells 2022; 11:958. [PMID: 35326409 PMCID: PMC8946835 DOI: 10.3390/cells11060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Catechin is an extensively investigated plant flavan-3-ol with a beneficial impact on human health that is often associated with antioxidant activities and iron coordination complex formation. The aim of this study was to explore these properties with FeII and FeIII using a combination of nanoelectrospray-mass spectrometry, differential pulse voltammetry, site-specific deoxyribose degradation assay, FeII autoxidation assay, and brine shrimp mortality assay. Catechin primarily favored coordination complex formation with Fe ions of the stoichiometry catechin:Fe in the ratio of 1:1 or 2:1. In the detected Fe-catechin coordination complexes, FeII prevailed. Differential pulse voltammetry, the site-specific deoxyribose degradation, and FeII autoxidation assays proved that coordination complex formation affected catechin's antioxidant effects. In situ formed Fe-catechin coordination complexes showed no toxic activities in the brine shrimp mortality assay. In summary, catechin has properties for the possible treatment of pathological processes associated with ageing and degeneration, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Lenka Kubicova
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Gert Bachmann
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Vladimir Chobot
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| |
Collapse
|
5
|
Staszek P, Krasuska U, Ciacka K, Gniazdowska A. ROS Metabolism Perturbation as an Element of Mode of Action of Allelochemicals. Antioxidants (Basel) 2021; 10:antiox10111648. [PMID: 34829519 PMCID: PMC8614981 DOI: 10.3390/antiox10111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The allelopathic interaction between plants is one of the elements that influences plant communities. It has been commonly studied by applying tissue extracts onto the acceptors or by treating them with isolated allelotoxins. Despite descriptive observations useful for agricultural practice, data describing the molecular mode of action of allelotoxins cannot be found. Due to the development of -omic techniques, we have an opportunity to investigate specific reactive oxygen species (ROS)-dependent changes in proteome or transcriptome that are induced by allelochemicals. The aim of our review is to summarize data on the ROS-induced modification in acceptor plants in response to allelopathic plants or isolated allelochemicals. We present the idea of how ROS are involved in the hormesis and plant autotoxicity phenomena. As an example of an -omic approach in studies of the mode of action of allelopatic compounds, we describe the influence of meta-tyrosine, an allelochemical exudated from roots of fescues, on nitration-one of nitro-oxidative posttranslational protein modification in the roots of tomato plants. We conclude that ROS overproduction and an induction of oxidative stress are general plants' responses to various allelochemicals, thus modification in ROS metabolisms is regarded as an indirect mode of action of allelochemicals.
Collapse
|
6
|
Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. PLANTS 2021; 10:plants10061212. [PMID: 34203650 PMCID: PMC8232089 DOI: 10.3390/plants10061212] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 01/08/2023]
Abstract
Weed management is an arduous undertaking in crop production. Integrated weed management, inclusive of the application of bioherbicides, is an emerging weed control strategy toward sustainable agriculture. In general, bioherbicides are derived either from plants containing phytotoxic allelochemicals or certain disease-carrying microbes that can suppress weed populations. While bioherbicides have exhibited great promise in deterring weed seed germination and growth, only a few in vitro studies have been conducted on the physiological responses they evoke in weeds. This review discusses bioherbicide products that are currently available on the market, bioherbicide impact on weed physiology, and potential factors influencing bioherbicide efficacy. A new promising bioherbicide product is introduced at the end of this paper. When absorbed, phytotoxic plant extracts or metabolites disrupt cell membrane integrity and important biochemical processes in weeds. The phytotoxic impact on weed growth is reflected in low levels of root cell division, nutrient absorption, and growth hormone and pigment synthesis, as well as in the development of reactive oxygen species (ROS), stress-related hormones, and abnormal antioxidant activity. The inconsistency of bioherbicide efficacy is a primary factor restricting their widespread use, which is influenced by factors such as bioactive compound content, weed control spectrum, formulation, and application method.
Collapse
|
7
|
Zhang KM, Shen Y, Yang J, Miu X, Bhowmik PC, Zhou X, Fang YM, Xing BS. The defense system for Bidens pilosa root exudate treatments in Pteris multifida gametophyte. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:203-213. [PMID: 30772710 DOI: 10.1016/j.ecoenv.2019.01.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 05/27/2023]
Abstract
According to the novel weapons hypothesis, root exudates are the inhibition factors for native species growth and development through invasive plants. It is hypothesized that antioxidant system (AOS) presents an effective role in plant defense system. The allelopathy indexes of P. multifida gametophyte biomass and sporogonium conversions rates turn negative with the dose and time effects, and the synthetical allelopathic effect index was -55.07% at 100% treatments under root exudates treatments. Under transmission electron microscopy, the cell structures turn burry. Next, AOS and programmed cell death (PCD) were tested in this study. In AOS, strong activities of superoxide dismutase, catalase, glutathione reductase and glutathione S-transferase (GST) were identified in gametophyte cells under the treatments, as well as the contents of glutathione, ascorbic acid and reduced ascorbate, while GPX activity decreased. Based on the input (SOD activity) and the output (GST activity) of antioxidant system, and the decreasing system control would be a reason leading gametophyte death under root exudates. At day 10, PCD would get its peak of 46.93% at 100% root exudates. We found a dynamic balance of PCD and AOS under the exudates treatments. We detected hexadecanoic acid, ethylene glycol and undecane are three major chemicals in root exudates. Our results provide a reference of AOS and PCD working under root exudates treatments in plants and offer novel strategy for the native species protection and invasion plants control in environment science.
Collapse
Affiliation(s)
- Kai-Mei Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Smithsonian Institution, National Museum of Natural History, Washington, DC 20560, USA
| | - Yu Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Jing Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Miu
- Shanghai Institutes for Biological Sciences, CAS & Shanghai Jiao Tong University School of Medicine Shanghai, 20031, China
| | - Prasanta C Bhowmik
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaoqi Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Bao-Shan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B. Ascophyllum nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. FRONTIERS IN PLANT SCIENCE 2019; 10:655. [PMID: 31191576 PMCID: PMC6548832 DOI: 10.3389/fpls.2019.00655] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/01/2019] [Indexed: 05/06/2023]
Abstract
Abiotic and biotic stresses limit the growth and productivity of plants. In the current global scenario, in order to meet the requirements of the ever-increasing world population, chemical pesticides and synthetic fertilizers are used to boost agricultural production. These harmful chemicals pose a serious threat to the health of humans, animals, plants, and the entire biosphere. To minimize the agricultural chemical footprint, extracts of Ascophyllum nodosum (ANE) have been explored for their ability to improve plant growth and agricultural productivity. The scientific literature reviewed in this article attempts to explain how certain bioactive compounds present in extracts aid to improve plant tolerances to abiotic and/or biotic stresses, plant growth promotion, and their effects on root/microbe interactions. These reports have highlighted the use of various seaweed extracts in improving nutrient use efficiency in treated plants. These studies include investigations of physiological, biochemical, and molecular mechanisms as evidenced using model plants. However, the various modes of action of A. nodosum extracts have not been previously reviewed. The information presented in this review depicts the multiple, beneficial effects of A. nodosum-based biostimulant extracts on plant growth and their defense responses and suggests new opportunities for further applications for marked benefits in production and quality in the agriculture and horticultural sectors.
Collapse
Affiliation(s)
- Pushp Sheel Shukla
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Emily Grace Mantin
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Mohd Adil
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Sruti Bajpai
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Alan T. Critchley
- Research & Development, Acadian Seaplants Limited, Dartmouth, NS, Canada
| | - Balakrishnan Prithiviraj
- Marine Bio-products Research Laboratory, Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
9
|
Chobot V, Hadacek F, Bachmann G, Weckwerth W, Kubicova L. Pro- and Antioxidant Activity of Three Selected Flavan Type Flavonoids: Catechin, Eriodictyol and Taxifolin. Int J Mol Sci 2016; 17:ijms17121986. [PMID: 27898046 PMCID: PMC5187786 DOI: 10.3390/ijms17121986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/04/2022] Open
Abstract
The flavanol (±)-catechin shows an OH group but no 4-keto group on ring C (C3), and no conjugation between ring A and B. The related flavanone (+)-eriodictyol has a keto group on C4 but no 3-OH group on ring C. (+)-Taxifolin, another flavanone, has an OH on C3 and a keto group on C4 of the C ring. Deoxyribose degradation assay systems, with hydrogen peroxide and ascorbic acid either added or omitted, were performed in variants in which Fe(III) was added in a complex with ethylenediaminetetraacetic acid (EDTA). In combination with differential pulse voltammetry (DVP), the specific redox-chemical contributions of the ring A m-dihydroxyl groups could be explored more specifically in addition to those of the traditionally investigated o-dihydroxyl groups of ring B.
Collapse
Affiliation(s)
- Vladimir Chobot
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Franz Hadacek
- Department of Plant Biochemistry, Albrecht-von-Haller Institut, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.
| | - Gert Bachmann
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Lenka Kubicova
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
10
|
Kayashima Y, Murata S, Sato M, Matsuura K, Asanuma T, Chimoto J, Ishii T, Mochizuki K, Kumazawa S, Nakayama T, Yamakawa-Kobayashi K. Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochem Biophys Rep 2015; 4:417-424. [PMID: 29124233 PMCID: PMC5669444 DOI: 10.1016/j.bbrep.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/27/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Background Polyphenols in tea are considered beneficial to human health. However, many such claims of their bioactivity still require in vitro and in vivo evidence. Results Using Drosophila melanogaster as a model multicellular organism, we assess the fat accumulation-suppressing effects of theaflavin (TF), a tea polyphenol; epitheaflagallin (ETG), which has an unknown function; and epigallocatechin gallate (EGCg), a prominent component of green tea. Dietary TF reduced the malondialdehyde accumulation related to a high-fat diet in adult flies. Other physiological and genetic responses induced by the high-fat diet, such as lipid accumulation in the fat body and expression of lipid metabolism-related genes, were ameliorated by the addition of TF, ETG, and EGCg, in some cases approaching respective levels without high-fat diet exposure. Continuous ingestion of the three polyphenols resulted in a shortened lifespan. Conclusion We provide evidence in Drosophila that tea polyphenols have a fat accumulation-suppressing effect that has received recent attention. We also suggest that tea polyphenols can provide different desirable biological activities depending on their composition and the presence or absence of other chemical components. Tea polyphenols have a fat accumulation-suppressing effect in Drosophila. Dietary theaflavin ameliorates high-fat diet-induced hydroperoxidase accumulation. The novel tea polyphenol epitheaflagallin strongly suppresses lipid accumulation. The beneficial effects of tea polyphenols can be enhanced by altering composition.
Collapse
Affiliation(s)
- Yasunari Kayashima
- Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Corresponding author at: Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan. Fax: +81 55 224 1396.Department of Food and Nutrition, Yamanashi Gakuin Junior College2-4-5 SakaoriKofu-shiYamanashi400-8575Japan
| | - Shinichi Murata
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Misaki Sato
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kanako Matsuura
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimichi Asanuma
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Junko Chimoto
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takeshi Ishii
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kazuo Mochizuki
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Shigenori Kumazawa
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tsutomu Nakayama
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
11
|
Sun Y, Collins AR, Schaffner U, Müller-Schärer H. Dissecting impact of plant invaders: Do invaders behave differently in the new range? Ecology 2013; 94:2124-30. [DOI: 10.1890/12-1910.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Hagan DL, Jose S, Lin CH. Allelopathic exudates of cogongrass (Imperata cylindrica): implications for the performance of native pine savanna plant species in the southeastern US. J Chem Ecol 2013; 39:312-22. [PMID: 23334457 DOI: 10.1007/s10886-013-0241-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/21/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
We conducted a greenhouse study to assess the effects of cogongrass (Imperata cylindrica) rhizochemicals on a suite of plants native to southeastern US pine savanna ecosystems. Our results indicated a possible allelopathic effect, although it varied by species. A ruderal grass (Andropogon arctatus) and ericaceous shrub (Lyonia ferruginea) were unaffected by irrigation with cogongrass soil "leachate" (relative to leachate from mixed native species), while a mid-successional grass (Aristida stricta Michx. var. beyrichiana) and tree (Pinus elliottii) were negatively affected. For A. stricta, we observed a 35.7 % reduction in aboveground biomass, a 21.9 % reduction in total root length, a 24.6 % reduction in specific root length and a 23.5 % reduction in total mycorrhizal root length, relative to the native leachate treatment. For P. elliottii, there was a 19.5 % reduction in percent mycorrhizal colonization and a 20.1 % reduction in total mycorrhizal root length. Comparisons with a DI water control in year two support the possibility that the treatment effects were due to the negative effects of cogongrass leachate, rather than a facilitative effect from the mixed natives. Chemical analyses identified 12 putative allelopathic compounds (mostly phenolics) in cogongrass leachate. The concentrations of most compounds were significantly lower, if they were present at all, in the native leachate. One compound was an alkaloid with a speculated structure of hexadecahydro-1-azachrysen-8-yl ester (C23H33NO4). This compound was not found in the native leachate. We hypothesize that the observed treatment effects may be attributable, at least partially, to these qualitative and quantitative differences in leachate chemistry.
Collapse
Affiliation(s)
- Donald L Hagan
- School of Agricultural, Forest, and Environmental Sciences, Clemson University, 212 Lehotsky Hall, Clemson, SC 29634, USA.
| | | | | |
Collapse
|
13
|
Cipollini D, Rigsby CM, Barto EK. Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 2012; 38:714-27. [PMID: 22585095 DOI: 10.1007/s10886-012-0133-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
Studies of allelopathy in terrestrial systems have experienced tremendous growth as interest has risen in describing biochemical mechanisms responsible for structuring plant communities, determining agricultural and forest productivity, and explaining invasive behaviors in introduced organisms. While early criticisms of allelopathy involved issues with allelochemical production, stability, and degradation in soils, an understanding of the chemical ecology of soils and its microbial inhabitants has been increasingly incorporated in studies of allelopathy, and recognized as an essential predictor of the outcome of allelopathic interactions between plants. Microbes can mediate interactions in a number of ways with both positive and negative outcomes for surrounding plants and plant communities. In this review, we examine cases where soil microbes are the target of allelopathic plants leading to indirect effects on competing plants, provide examples where microbes play either a protective effect on plants against allelopathic competitors or enhance allelopathic effects, and we provide examples where soil microbial communities have changed through time in response to allelopathic plants with known or potential effects on plant communities. We focus primarily on interactions involving wild plants in natural systems, using case studies of some of the world's most notorious invasive plants, but we also provide selected examples from agriculturally managed systems. Allelopathic interactions between plants cannot be fully understood without considering microbial participants, and we conclude with suggestions for future research.
Collapse
Affiliation(s)
- Don Cipollini
- Department of Biological Sciences, Environmental Sciences PhD Program, Wright State University, Dayton, OH, USA.
| | | | | |
Collapse
|