1
|
Zarzuelo-Romero MJ, Pérez-Ramírez C, Cura Y, Carrasco-Campos MI, Marangoni-Iglecias LM, Ramírez-Tortosa MC, Jiménez-Morales A. Influence of Genetic Polymorphisms on Clinical Outcomes of Glatiramer Acetate in Multiple Sclerosis Patients. J Pers Med 2021; 11:jpm11101032. [PMID: 34683173 PMCID: PMC8540092 DOI: 10.3390/jpm11101032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of autoimmune origin, in which inflammation and demyelination lead to neurodegeneration and progressive disability. Treatment is aimed at slowing down the course of the disease and mitigating its symptoms. One of the first-line treatments used in patients with MS is glatiramer acetate (GA). However, in clinical practice, a response rate of between 30% and 55% is observed. This variability in the effectiveness of the medication may be influenced by genetic factors such as polymorphisms in the genes involved in the pathogenesis of MS. Therefore, this review assesses the impact of genetic variants on the response to GA therapy in patients diagnosed with MS. The results suggest that a relationship exists between the effectiveness of the treatment with GA and the presence of polymorphisms in the following genes: CD86, CLEC16A, CTSS, EOMES, MBP, FAS, TRBC1, IL1R1, IL12RB2, IL22RA2, PTPRT, PVT1, ALOX5AP, MAGI2, ZAK, RFPL3, UVRAG, SLC1A4, and HLA-DRB1*1501. Consequently, the identification of polymorphisms in these genes can be used in the future as a predictive marker of the response to GA treatment in patients diagnosed with MS. Nevertheless, there is a lack of evidence for this and more validation studies need to be conducted to apply this information to clinical practice.
Collapse
Affiliation(s)
- María José Zarzuelo-Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18001 Granada, Spain;
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
- Correspondence:
| | - Yasmín Cura
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Isabel Carrasco-Campos
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - Luciana María Marangoni-Iglecias
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Carmen Ramírez-Tortosa
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| |
Collapse
|
2
|
Melnikov M, Sharanova S, Sviridova A, Rogovskii V, Murugina N, Nikolaeva A, Dagil Y, Murugin V, Ospelnikova T, Boyko A, Pashenkov M. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS One 2020; 15:e0240305. [PMID: 33126239 PMCID: PMC7599084 DOI: 10.1371/journal.pone.0240305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glatiramer acetate (GA) is approved for the treatment of multiple sclerosis (MS). However, the mechanism of action of GA in MS is still unclear. In particular, it is not known whether GA can modulate the pro-inflammatory Th17-type immune response in MS. We investigated the effects of original GA (Copaxone®, Teva, Israel) and generic GA (Timexone®, Biocad, Russia) on Th17- and Th1-type cytokine production in vitro in 25 patients with relapsing-remitting MS and 25 healthy subjects. Both original and generic GA at concentrations 50–200 μg/ml dose-dependently inhibited interleukin-17 and interferon-γ production by anti-CD3/anti-CD28-activated peripheral blood mononuclear cells from MS patients and healthy subjects. This effect of GA was reproduced using purified CD4+ T cells, suggesting that GA can directly modulate the functions of Th17 and Th1 cells. At high concentrations (100–200 μg/ml), GA also suppressed the production of Th17-differentiation cytokines (interleukin-1β and interleukin-6) by lipopolysaccharide (LPS)-activated dendritic cells (DCs). These GA/LPS-treated DCs induced lower interleukin-17 and interferon-γ production by autologous CD4+ T cells compared to LPS-treated DCs. These data suggest that GA can inhibit Th17-immune response and that this inhibitory effect is preferentially exercised by direct influence of GA on T cells. We also demonstrate a comparable ability of original and generic GA to modulate pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Mikhail Melnikov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- * E-mail:
| | - Svetlana Sharanova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasiya Sviridova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Vladimir Rogovskii
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nina Murugina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna Nikolaeva
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Yulia Dagil
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Vladimir Murugin
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Tatiana Ospelnikova
- Laboratory of Interferons, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Alexey Boyko
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Neuroimmunology, Federal Center of Brain Research and Neurotechnology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Mikhail Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
3
|
Lin CC, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 198:4553-4560. [PMID: 28583987 DOI: 10.4049/jimmunol.1700263] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis, are neuroinflammatory diseases driven by autoreactive pathogenic TH cells that elicit demyelination and axonal damage. How TH cells acquire pathogenicity and communicate with myeloid cells and cells of the CNS remain unclear. IL-1β is recognized to play an important role in experimental autoimmune encephalomyelitis (EAE) and perhaps MS. Clinical EAE is significantly attenuated in IL-1R-deficient and IL-1β-deficient mice, and IL-1β is found in the blood, cerebrospinal fluid, and CNS lesions of MS patients. In this article, we focus on new reports that elucidate the cellular sources of IL-1β and its actions during EAE, in both lymphoid tissues and within the CNS. Several immune cell types serve as critical producers of IL-1β during EAE, with this cytokine inducing response in both hematopoietic and nonhematopoietic cells. These findings from the EAE model should inspire efforts toward investigating the therapeutic potential of IL-1 blockade in MS.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
4
|
Lévesque SA, Paré A, Mailhot B, Bellver-Landete V, Kébir H, Lécuyer MA, Alvarez JI, Prat A, de Rivero Vaccari JP, Keane RW, Lacroix S. Myeloid cell transmigration across the CNS vasculature triggers IL-1β-driven neuroinflammation during autoimmune encephalomyelitis in mice. J Exp Med 2016; 213:929-49. [PMID: 27139491 PMCID: PMC4886360 DOI: 10.1084/jem.20151437] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022] Open
Abstract
Growing evidence supports a role for IL-1 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), but how it impacts neuroinflammation is poorly understood. We show that susceptibility to EAE requires activation of IL-1R1 on radiation-resistant cells via IL-1β secreted by bone marrow-derived cells. Neutrophils and monocyte-derived macrophages (MDMs) are the main source of IL-1β and produce this cytokine as a result of their transmigration across the inflamed blood-spinal cord barrier. IL-1R1 expression in the spinal cord is found in endothelial cells (ECs) of the pial venous plexus. Accordingly, leukocyte infiltration at EAE onset is restricted to IL-1R1(+) subpial and subarachnoid vessels. In response to IL-1β, primary cultures of central nervous system ECs produce GM-CSF, G-CSF, IL-6, Cxcl1, and Cxcl2. Initiation of EAE or subdural injection of IL-1β induces a similar cytokine/chemokine signature in spinal cord vessels. Furthermore, the transfer of Gr1(+) cells on the spinal cord is sufficient to induce illness in EAE-resistant IL-1β knockout (KO) mice. Notably, transfer of Gr1(+) cells isolated from C57BL/6 mice induce massive recruitment of recipient myeloid cells compared with cells from IL-1β KO donors, and this recruitment translates into more severe paralysis. These findings suggest that an IL-1β-dependent paracrine loop between infiltrated neutrophils/MDMs and ECs drives neuroinflammation.
Collapse
Affiliation(s)
- Sébastien A Lévesque
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Alexandre Paré
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Benoit Mailhot
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Victor Bellver-Landete
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| | - Hania Kébir
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Marc-André Lécuyer
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Jorge Ivan Alvarez
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Robert W Keane
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Steve Lacroix
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|