1
|
Watanabe A, Hataida H, Inoue N, Kamon K, Baba K, Sasaki K, Kimura R, Sasaki H, Eura Y, Ni WF, Shibasaki Y, Waguri S, Kokame K, Shiba Y. Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor. Biol Open 2021; 10:271213. [PMID: 34369554 PMCID: PMC8430232 DOI: 10.1242/bio.058789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Arf GTPase-Activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors (Arfs), which are critical to form transport intermediates. ArfGAPs have been thought to be negative regulators of Arfs; however, accumulating evidence indicates that ArfGAPs are important for cargo sorting and promote membrane traffic. Weibel-Palade bodies (WPBs) are cigar-shaped secretory granules in endothelial cells that contain von Willebrand factor (vWF) as their main cargo. WPB biogenesis at the Golgi was reported to be regulated by Arf and their regulators, but the role of ArfGAPs has been unknown. In this study, we performed siRNA screening of ArfGAPs to investigate the role of ArfGAPs in the biogenesis of WPBs. We found two ArfGAPs, SMAP1 and AGFG2, to be involved in WPB size and vWF exocytosis, respectively. SMAP1 depletion resulted in small-sized WPBs, and the lysosomal inhibitor leupeptin recovered the size of WPBs. The results indicate that SMAP1 functions in preventing the degradation of cigar-shaped WPBs. On the other hand, AGFG2 downregulation resulted in the inhibition of vWF secretion upon Phorbol 12-myristate 13-acetate (PMA) or histamine stimulation, suggesting that AGFG2 plays a role in vWF exocytosis. Our study revealed unexpected roles of ArfGAPs in vWF transport. Summary: The Arf GTPase-activating proteins SMAP1 and AGFG2 regulate the size of Weibel-Palade bodies and exocytosis of von Willebrand factor.
Collapse
Affiliation(s)
- Asano Watanabe
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Hikari Hataida
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Naoya Inoue
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Kosuke Kamon
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Keigo Baba
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Kuniaki Sasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Rika Kimura
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Honoka Sasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Yuka Eura
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Wei-Fen Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 80201, Taiwan
| | - Yuji Shibasaki
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka, 564-8565, Japan
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka, 020-8551, Japan
| |
Collapse
|
2
|
Kon S, Funaki T, Satake M. Putative terminator and/or effector functions of Arf GAPs in the trafficking of clathrin-coated vesicles. CELLULAR LOGISTICS 2014; 1:86-89. [PMID: 21922072 DOI: 10.4161/cl.1.3.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 11/19/2022]
Abstract
The role of ArfGAP1 as a terminator or effector in COPi-vesicle formation has been the subject of ongoing discussions. Here, the discussion on the putative terminator/effector functions has been enlarged to include Arf GAP members involved in the formation of clathrin-coated vesicles. ACAP1, whose role has been studied extensively, enhances the recycling of endocytosed proteins to the plasma membrane. Importantly, this positive role appears to be an overall reflection of both the terminator and effector activities attributed to ACAP1. Other Arf GAP subtypes have also been suggested to possess both terminator and effector activities. Interestingly, while most Arf GAP proteins regulate membrane trafficking by acting as facilitators, a few Arf GAP subtypes act as inhibitors.
Collapse
Affiliation(s)
- Shunsuke Kon
- Institute of Development, Aging and Cancer; Tohoku University; Sendai, Japan
| | | | | |
Collapse
|
3
|
Zheng P, Gao F, Deng K, Gong W, Sun Z. Expression, purification and preliminary X-ray crystallographic analysis of Arf1-GDP in complex with dimeric p23 peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1155-8. [PMID: 24100571 PMCID: PMC3792679 DOI: 10.1107/s1744309113024330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/31/2013] [Indexed: 05/19/2024]
Abstract
Arf1 is a member of the Ras superfamily and is involved in COPI vesicle formation. Arf1-GDP can interact with dimeric p23. Here, human Arf1 (residues 18-181) was cloned, expressed and purified in Escherichia coli. For crystallization, Arf1-GDP was mixed with dimeric p23 peptide in a 1:5 molar ratio. Crystals were obtained which diffracted to 2.7 Å resolution. The crystals belonged to space group P6₁22, with unit-cell parameters a=b=80.6, c=336.0 Å, α=β=90, γ=120°. The asymmetric unit of the crystals contained two molecules, with a Matthews coefficient of 3.2 Å3 Da(-1) and a solvent content of 61.9%.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Feng Gao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Kai Deng
- Reproductive Medicine Research Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People’s Republic of China
| | - Weimin Gong
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Zhe Sun
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| |
Collapse
|
4
|
Schlacht A, Mowbrey K, Elias M, Kahn RA, Dacks JB. Ancient complexity, opisthokont plasticity, and discovery of the 11th subfamily of Arf GAP proteins. Traffic 2013; 14:636-49. [PMID: 23433073 DOI: 10.1111/tra.12063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
The organelle paralogy hypothesis is one model for the acquisition of nonendosymbiotic organelles, generated from molecular evolutionary analyses of proteins encoding specificity in the membrane traffic system. GTPase activating proteins (GAPs) for the ADP-ribosylation factor (Arfs) GTPases are additional regulators of the kinetics and fidelity of membrane traffic. Here we describe molecular evolutionary analyses of the Arf GAP protein family. Of the 10 subfamilies previously defined in humans, we find that 5 were likely present in the last eukaryotic common ancestor. Of the 3 most recently derived subfamilies, 1 was likely present in the ancestor of opisthokonts (animals and fungi) and apusomonads (flagellates classified as the sister lineage to opisthokonts), while 2 arose in the holozoan lineage. We also propose to have identified a novel ancient subfamily (ArfGAPC2), present in diverse eukaryotes but which is lost frequently, including in the opisthokonts. Surprisingly few ancient domains accompanying the ArfGAP domain were identified, in marked contrast to the extensively decorated human Arf GAPs. Phylogenetic analyses of the subfamilies reveal patterns of single and multiple gene duplications specific to the Holozoa, to some degree mirroring evolution of Arf GAP targets, the Arfs. Conservation, and lack thereof, of various residues in the ArfGAP structure provide contextualization of previously identified functional amino acids and their application to Arf GAP biology in general. Overall, our results yield insights into current Arf GAP biology, reveal complexity in the ancient eukaryotic ancestor and integrate the Arf GAP family into a proposed mechanism for the evolution of nonendosymbiotic organelles.
Collapse
Affiliation(s)
- Alexander Schlacht
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
5
|
Shiba Y, Randazzo PA. ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs. Histol Histopathol 2012; 27:1143-53. [PMID: 22806901 DOI: 10.14670/hh-27.1143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide binding-protein ADP-ribosylation factor (Arf). Functional models for Arfs, which are regulators of membrane traffic, are based on the idea that guanine nucleotide-binding proteins function as switches: Arf with GTP bound is active and binds to effector proteins; the conversion of GTP to GDP inactivates Arf. The cellular activities of ArfGAPs have been examined primarily as regulatory proteins that inactivate Arf; however, Arf function in membrane traffic does not strictly adhere to the concept of a simple switch, adding complexity to models explaining the role of ArfGAPs. Here, we review the literature addressing the function Arf and ArfGAP1 in COPI mediated transport, focusing on two critical and integrated functions of membrane traffic, cargo sorting and vesicle coat polymerization. We briefly discuss other ArfGAPs that may have similar function in Arf-dependent membrane traffic outside the ER-Golgi.
Collapse
Affiliation(s)
- Yoko Shiba
- National Cancer Institute, Laboratory of Cellular and Molecular Biology, Bethesda, MD 20892, USA
| | | |
Collapse
|
6
|
Shiba Y, Luo R, Hinshaw JE, Szul T, Hayashi R, Sztul E, Nagashima K, Baxa U, Randazzo PA. ArfGAP1 promotes COPI vesicle formation by facilitating coatomer polymerization. CELLULAR LOGISTICS 2011; 1:139-154. [PMID: 22279613 PMCID: PMC3265926 DOI: 10.4161/cl.1.4.18896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 12/31/2022]
Abstract
The role of ArfGAP1 in COPI vesicle biogenesis has been controversial. In work using isolated Golgi membranes, ArfGAP1 was found to promote COPI vesicle formation. In contrast, in studies using large unilamellar vesicles (LUVs) as model membranes, ArfGAP1 functioned as an uncoating factor inhibiting COPI vesicle formation. We set out to discriminate between these models. First, we reexamined the effect of ArfGAP1 on LUVs. We found that ArfGAP1 increased the efficiency of coatomer-induced deformation of LUVs. Second, ArfGAP1 and peptides from cargo facilitated self-assembly of coatomer into spherical structures in the absence of membranes, reminiscent of clathrin self-assembly. Third, in vivo, ArfGAP1 overexpression induced the accumulation of vesicles and allowed normal trafficking of a COPI cargo. Taken together, these data support the model in which ArfGAP1 promotes COPI vesicle formation and membrane traffic and identify a function for ArfGAP1 in the assembly of coatomer into COPI.
Collapse
Affiliation(s)
- Yoko Shiba
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| | - Ruibai Luo
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| | - Jenny E Hinshaw
- National Institute of Diabetes and Digestive and Kidney Disease; National Institutes of Health; Bethesda, MD USA
| | - Tomasz Szul
- Department of Cell Biology; The University of Alabama at Birmingham; Birmingham, AL USA
| | - Ryo Hayashi
- Laboratory of Cell Biology; National Cancer Institute; Bethesda, MD USA
| | - Elizabeth Sztul
- Department of Cell Biology; The University of Alabama at Birmingham; Birmingham, AL USA
| | - Kunio Nagashima
- Electron Microscopy Laboratory, ATP, SAIC-Frederick, Center for Cancer Research, National Cancer Institute; Frederick, MD USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, ATP, SAIC-Frederick, Center for Cancer Research, National Cancer Institute; Frederick, MD USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology; National Cancer Institute, Bethesda, MD USA
| |
Collapse
|