1
|
Dhaouafi J, Nedjar N, Jridi M, Romdhani M, Balti R. Extraction of Protein and Bioactive Compounds from Mediterranean Red Algae ( Sphaerococcus coronopifolius and Gelidium spinosum) Using Various Innovative Pretreatment Strategies. Foods 2024; 13:1362. [PMID: 38731733 PMCID: PMC11083387 DOI: 10.3390/foods13091362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, the release of proteins and other biomolecules into an aqueous media from two red macroalgae (Sphaerococcus coronopifolius and Gelidium spinosum) was studied using eight different cell disruption techniques. The contents of carbohydrates, pigments, and phenolic compounds coextracted with proteins were quantified. In addition, morphological changes at the cellular level in response to the different pretreatment methods were observed by an optical microscope. Finally, the antioxidant capacity of obtained protein extracts was evaluated using three in vitro tests. For both S. coronopifolius and G. spinosum, ultrasonication for 60 min proved to be the most effective technique for protein extraction, yielding values of 3.46 ± 0.06 mg/g DW and 9.73 ± 0.41 mg/g DW, respectively. Furthermore, the highest total contents of phenolic compounds, flavonoids, and carbohydrates were also recorded with the same method. However, the highest pigment contents were found with ultrasonication for 15 min. Interestingly, relatively high antioxidant activities like radical scavenging activity (31.57-65.16%), reducing power (0.51-1.70, OD at 700 nm), and ferrous iron-chelating activity (28.76-61.37%) were exerted by the different protein extracts whatever the pretreatment method applied. This antioxidant potency could be attributed to the presence of polyphenolic compounds, pigments, and/or other bioactive substances in these extracts. Among all the used techniques, ultrasonication pretreatment for 60 min appears to be the most efficient method in terms of destroying the macroalgae cell wall and extracting the molecules of interest, especially proteins. The protein fractions derived from the two red macroalgae under these conditions were precipitated with ammonium sulfate, lyophilized, and their molecular weight distribution was determined using SDS-PAGE. Our results showed that the major protein bands were observed between 25 kDa and 60 kDa for S. coronopifolius and ranged from 20 kDa to 150 kDa for G. spinosum. These findings indicated that ultrasonication for 60 min could be sufficient to disrupt the algae cells for obtaining protein-rich extracts with promising biological properties, especially antioxidant activity.
Collapse
Affiliation(s)
- Jihen Dhaouafi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba, BP, 382, Beja 9000, Tunisia; (J.D.); (M.J.); (M.R.)
- UMR Transfrontalière BioEcoAgro N°1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France;
| | - Naima Nedjar
- UMR Transfrontalière BioEcoAgro N°1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France;
| | - Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba, BP, 382, Beja 9000, Tunisia; (J.D.); (M.J.); (M.R.)
| | - Montassar Romdhani
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba, BP, 382, Beja 9000, Tunisia; (J.D.); (M.J.); (M.R.)
- UMR Transfrontalière BioEcoAgro N°1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, ICV—Institut Charles Viollette, 59000 Lille, France;
| | - Rafik Balti
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France
| |
Collapse
|
2
|
Zhang X, Huang L, Sun J, Liu J, Zong Y, Wan L, Yang X, Yan X, Zhang Y, Zhao R, Liu J, Zhong H, Wei C, Yang X, Tai Y, Han Y, Wang Y. Monopolar spindle 1 contributes to tamoxifen resistance in breast cancer through phosphorylation of estrogen receptor α. Breast Cancer Res Treat 2023; 202:595-606. [PMID: 37695401 DOI: 10.1007/s10549-023-07098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE The overexpression of mitotic kinase monopolar spindle 1 (Mps1) has been identified in many tumor types, and targeting Mps1 for tumor therapy has shown great promise in multiple preclinical cancer models. However, the role played by Mps1 in tamoxifen (TAM) resistance in breast cancer has never been reported. METHODS The sensitivity of breast cancer cells to tamoxifen was analysed in colony formation assays and wound healing assays. Enhanced transactivational activity of estrogen receptor α (ERα) led by Mps1 overexpression was determined by luciferase assays. The interaction between Mps1 and ERα was verified by co-immunoprecipitation and proximity ligation assay. Phosphorylation of ERα by Mps1 was detected by in vitro kinase assay and such phosphorylation process in vivo was proven by co-immunoprecipitation. The potential phosphorylation site(s) of ERα were analyzed by mass spectrometry. RESULTS Mps1 determines the sensitivity of breast cancer cells to tamoxifen treatment. Mps1 overexpression rendered breast cancer cells more resistant to tamoxifen, while an Mps1 inhibitor or siMps1 oligos enabled cancer cells to overcome tamoxifen resistance. Mechanistically, Mps1 interacted with estrogen receptor α and stimulated its transactivational activity in a kinase activity-dependent manner. Mps1 was critical for ERα phosphorylation at Thr224 amino acid site. Importantly, Mps1 failed to enhance the transactivational activity of the ERα-T224A mutant. CONCLUSION Mps1 contributes to tamoxifen resistance in breast cancer and is a potential therapeutic that can overcome tamoxifen resistance in breast cancer.
Collapse
Affiliation(s)
- Xuemiao Zhang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, The Training Site for Postgraduates of Jinzhou Medical University, Jinzhou, 121001, China
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jing Sun
- China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Jialong Liu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yulong Zong
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xue Yan
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ruzhou Zhao
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jing Liu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaoli Yang
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, The Training Site for Postgraduates of Jinzhou Medical University, Jinzhou, 121001, China
- Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Clinical School of the Third Medical Center of Chinese PLA General Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yanhong Tai
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100166, China
| | - Yue Han
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanhai Wang
- Department of Clinical Laboratory, Huhhot First Hospital, Huhhot, 010030, China.
| |
Collapse
|
3
|
Zhang Y, Chen R, Gong L, Huang W, Li P, Zhai Z, Ling E. Regulation of intestinal stem cell activity by a mitotic cell cycle regulator Polo in Drosophila. G3 (BETHESDA, MD.) 2023; 13:jkad084. [PMID: 37154439 PMCID: PMC10234410 DOI: 10.1093/g3journal/jkad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
Maintaining a definite and stable pool of dividing stem cells plays an important role in organ development. This process requires an appropriate progression of mitosis for proper spindle orientation and polarity to ensure the ability of stem cells to proliferate and differentiate correctly. Polo-like kinases (Plks)/Polo are the highly conserved serine/threonine kinases involved in the initiation of mitosis as well as in the progression of the cell cycle. Although numerous studies have investigated the mitotic defects upon loss of Plks/Polo in cells, little is known about the in vivo consequences of stem cells with abnormal Polo activity in the context of tissue and organism development. The current study aimed to investigate this question using the Drosophila intestine, an organ dynamically maintained by the intestinal stem cells (ISCs). The results indicated that the polo depletion caused a reduction in the gut size due to a gradual decrease in the number of functional ISCs. Interestingly, the polo-deficient ISCs showed an extended G2/M phase and aneuploidy and were subsequently eliminated by premature differentiation into enterocytes (ECs). In contrast, the constitutively active Polo (poloT182D) suppressed ISC proliferation, induced abnormal accumulation of β-tubulin in cells, and drove ISC loss via apoptosis. Therefore, Polo activity should be properly maintained for optimal stem cell function. Further analysis suggested that polo was a direct target gene of Sox21a, a Sox transcription factor that critically regulates stem cell activity. Together, this study provided a novel perspective on the correlation between the progression of mitosis and the ISC function in Drosophila.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rongbing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liyuan Gong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wuren Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Erjun Ling
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
4
|
Borges DDP, Dos Santos AWA, Paier CRK, Ribeiro HL, Costa MB, Farias IR, de Oliveira RTG, França IGDF, Cavalcante GM, Magalhães SMM, Pinheiro RF. Prognostic importance of Aurora Kinases and mitotic spindle genes transcript levels in Myelodysplastic syndrome. Leuk Res 2017; 64:61-70. [PMID: 29220700 DOI: 10.1016/j.leukres.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
Myelodysplastic syndrome (MDS) are a heterogeneous group of clonal disease characterized by insufficiency of bone marrow, increase of apoptosis and increased risk of acute leukemia progression. Proteins related to the mitotic spindle (AURKA, AURKB, TPX2), to the mitotic checkpoint (MAD2, CDC20) and the regulation of the cell cycle (p21) are directly related to chromosomal stability and tumor development. This study aimed to evaluate the mRNA expression levels of these genes in 101 MDS patients using a real-time PCR methodology. We identified that CDC20 expression are increased in patients with dysmegakaryopoiesis (p=0.024), thrombocytopenia (p=0.000) and high-risk patients (p=0.014, 0.018) MAD2 expression are decreased in patients with 2 or 3 cytopenias (p=0.000) and neutrophil below 800/mm3. TPX2 is also overexpressed in patients presenting dysmegakaryopoiesis (p=0.009). A decrease in AURKA and AURKB expression were observed in patients with altered karyotype (p=0.000), who presented dysplasia in 3 lineages (p=0.000; 0.017) and hemoglobin inferior to 8g/dL (p=0.024). The expression of AURKA, AURKB and MAD2 (p=0.000; 0.001; 0.025) were decreased in patients with hypoplastic MDS, associated with high frequency of chromosomal alterations and high mortality rate. This study reaffirms the importance of aurora kinases and mitotic spindle genes to the pathogenesis and clinical evolution of MDS.
Collapse
Affiliation(s)
- Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Antônio Wesley Araújo Dos Santos
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marília Braga Costa
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Izabelle Rocha Farias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ivo Gabriel da Frota França
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Gabrielle Melo Cavalcante
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Sílvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
5
|
Peng F, Zhao Y, Huang X, Chen C, Sun L, Zhuang L, Xue L. Loss of Polo ameliorates APP-induced Alzheimer's disease-like symptoms in Drosophila. Sci Rep 2015; 5:16816. [PMID: 26597721 PMCID: PMC4657023 DOI: 10.1038/srep16816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
The amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer’s disease (AD). Despite extensive studies, little is known about the regulation of APP’s functions in vivo. Here we report that expression of human APP in Drosophila, in the same temporal-spatial pattern as its homolog APPL, induced morphological defects in wings and larval NMJ, larva and adult locomotion dysfunctions, male choice disorder and lifespan shortening. To identify additional genes that modulate APP functions, we performed a genetic screen and found that loss of Polo, a key regulator of cell cycle, partially suppressed APP-induced morphological and behavioral defects in larval and adult stages. Finally, we showed that eye-specific expression of APP induced retina degeneration and cell cycle re-entry, both phenotypes were mildly ameliorated by loss of Polo. These results suggest Polo is an important in vivo regulator of the pathological functions of APP, and provide insight into the role of cell cycle re-entry in AD pathogenesis.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yu Zhao
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xirui Huang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Changyan Chen
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lili Sun
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Luming Zhuang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|