1
|
Qi J, Han W, Zhong N, Gou Q, Sun C. Integrated analysis of miRNA-mRNA regulatory network and functional verification of miR-338-3p in coronary heart disease. Funct Integr Genomics 2022; 23:16. [PMID: 36562844 DOI: 10.1007/s10142-022-00941-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Coronary heart disease is a cardiovascular disease with high morbidity and mortality. Although great progress has been made in treatment, the prognosis is still very poor. Therefore, this project aims to screen potential diagnostic markers and therapeutic targets related to the progression of coronary heart disease. A total of 94 overlapping differentially expressed mRNAs and 70 differentially expressed miRNAs were identified from GSE20681, GSE12288, GSE49823, and GSE105449. Through a series of bioinformatics methods and experiment, we obtained 5 core miRNA-mRNA regulatory pairs, and selected miR-338-3p/RPS23 for functional analysis. Moreover, we found that RPS23 directly targets miR-338-3p by dual luciferase assay, western, and qPCR. And the expression of miR-338-3p and RPS23 is negatively correlated. The AUC value of miR-338-3p is 0.847. Downregulation of miR-338-3p can significantly inhibit the proliferation and migration of HUVEC. On the contrary, overexpression of miR-338-3p promoted the proliferation and migration of HUVEC. In addition, the interference of RPS23 expression can reverse the regulation of miR-338-3p on HUVEC proliferation. In conclusion, miR-338-3p/RPS23 may be involved in the progression of coronary heart disease, and miR-338-3p may be a diagnostic biomarker and therapeutic target for coronary heart disease.
Collapse
Affiliation(s)
- Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China.,Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wenqi Han
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Nier Zhong
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Qiling Gou
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Chaofeng Sun
- Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
2
|
Wang J, Wang X, WeiminWang, Li F, Zhang D, Li X, Zhang Y, Zhao Y, Zhao L, Xu D, Cheng J, Li W, Zhou B, Lin C, Yang X, Zhai R, Zeng X, Zhang X. Molecular characterization and expression of RPS23 and HPSE and their association with hematologic parameters in sheep. Gene 2022; 837:146654. [PMID: 35718240 DOI: 10.1016/j.gene.2022.146654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
Ribosomal protein S23 (RPS23) and Heparanase (HPSE) were located on chromosome 5 and chromosome 6, respectively, which play vital roles in protein synthesis and immunity. The objective of this study was to clone RPS23 and HPSE and to detect the expression levels of RPS23 and HPSE and the polymorphisms of RPS23 and HPSE associated with the hematologic parameters by using qRT-PCR, DNA sequencing and KASPar assay. The quantitative real-time PCR (RT-qPCR) showed that the two genes were expressed widely in the ten tissues of sheep. The expression levels of RPS23 and HPSE were the highest in lung and liver, respectively. The expression levels of RPS23 and HPSE in lung and liver increased from 0 to 3 months, decreased from 3 to 6 months, respectively. Furthermore, two mutations g.720 A > G and g.1077 G > A were detected in the RPS23 and HPSE, respectively, which were confirmed to be significantly associated with hematologic parameters. These results supported RPS23 g.720 A > G and HPSE g.1077 G > A as genetic markers of sheep.
Collapse
Affiliation(s)
- Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaojuan Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - WeiminWang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China; Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
3
|
Hydroxylation of protein constituents of the human translation system: structural aspects and functional assignments. Future Med Chem 2019; 11:357-369. [PMID: 30802140 DOI: 10.4155/fmc-2018-0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the current decade, data on the post-translational hydroxylation of specific amino acid residues of some ribosomal proteins and translation factors in both eukaryotes and eubacteria have accumulated. The reaction is catalyzed by dedicated oxygenases (so-called ribosomal oxygenases), whose action is impaired under hypoxia conditions. The modification occurs at amino acid residues directly involved in the formation of the main functional sites of ribosomes and factors. This review summarizes currently available data on the specific hydroxylation of protein constituents of eukaryotic and eubacterial translation systems with a special emphasis on the human system, as well as on the links between hypoxia impacts on the operation of ribosomal oxygenases, the functioning of the translational apparatus and human health problems.
Collapse
|