1
|
Hong L, Li J, Zeng W, Li Y, Yu C, Zhao S, Chen L, Feng Y. The seroprevalence of adenoviruses since 2000 1. Emerg Microbes Infect 2025; 14:2475831. [PMID: 40035700 PMCID: PMC11915735 DOI: 10.1080/22221751.2025.2475831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Accepted: 03/02/2025] [Indexed: 03/06/2025]
Abstract
Human adenoviruses (Ad) are increasingly used as vaccine vectors, especially after Ad5, Ad26, and ChAdY25 (ChAdOx1) were employed as vectors for SARS-CoV-2 vaccines. So far, more than 116 adenovirus genotypes have been identified, divided into 7 species (A-G). Most adenoviruses do not cause diseases or are mildly pathogenic, with only species B and E leading to acute respiratory infections or conjunctival inflammation and species F causing gastrointestinal infections. Previous studies have shown that the seroprevalence of neutralizing antibodies against adenoviruses can be limiting when applying adenoviral vectors. On the other hand, for highly pathogenic adenoviruses, neutralizing antibodies is beneficial for preventing the diseases caused by these adenoviruses. Here, we summarized the studies on the seroprevalence of adenoviruses, especially adenoviruses that may be utilized as vectors for vaccine and gene therapy. We also analysed possible factors associated with the seroprevalence and neutralizing titres. Given the trend of increasing adenoviral vector application, it is necessary to continue the investigation of the seroprevalence of neutralizing antibodies against adenoviruses in different geographic locations and populations.
Collapse
Affiliation(s)
- Lingling Hong
- Department of Respiratory and Critical Care Medicine, Huadu District People's Hospital of Guangzhou, South China Medical University, Guangzhou, People's Republic of China
| | - Jiashun Li
- Department of Respiratory and Critical Care Medicine, Huadu District People's Hospital of Guangzhou, South China Medical University, Guangzhou, People's Republic of China
| | - Weikai Zeng
- Department of Respiratory and Critical Care Medicine, Huadu District People's Hospital of Guangzhou, South China Medical University, Guangzhou, People's Republic of China
| | - Yuhua Li
- Department of Arboviruse vaccine, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Changfa Yu
- Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Shutao Zhao
- Department of Respiratory and Critical Care Medicine, Huadu District People's Hospital of Guangzhou, South China Medical University, Guangzhou, People's Republic of China
| | - Ling Chen
- Guangzhou National Laboratory, Guangzhou, People's Republic of China
- Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Ying Feng
- Guangzhou National Laboratory, Guangzhou, People's Republic of China
- Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Vallet T, Vignuzzi M. Self-Amplifying RNA: Advantages and Challenges of a Versatile Platform for Vaccine Development. Viruses 2025; 17:566. [PMID: 40285008 PMCID: PMC12031284 DOI: 10.3390/v17040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Self-amplifying RNA is synthetic nucleic acid engineered to replicate within cells without generating viral particles. Derived from alphavirus genomes, saRNA retains the non-structural elements essential for replication while replacing the structural elements with an antigen of interest. By enabling efficient intracellular amplification, saRNA offers a promising alternative to conventional mRNA vaccines, enhancing antigen expression while requiring lower doses. However, this advantage comes with challenges. In this review, we highlight the key limitations of saRNA technology and explore potential strategies to overcome them. By identifying these challenges, we aim to provide insights that can guide the future design of saRNA-based therapeutics, extending their potential beyond vaccine applications.
Collapse
Affiliation(s)
- Thomas Vallet
- A*STAR Infectious Diseases Labs (A*IDL), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 118420, Singapore
| | - Marco Vignuzzi
- A*STAR Infectious Diseases Labs (A*IDL), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 118420, Singapore
| |
Collapse
|
3
|
Huayamares SG, Lian L, Rab R, Hou Y, Radmand A, Kim H, Zenhausern R, Achyut BR, Gilbert Ross M, Lokugamage MP, Loughrey D, Peck HE, Echeverri ES, Da Silva Sanchez AJ, Shajii A, Li A, Tiegreen KE, Santangelo PJ, Sorscher EJ, Dahlman JE. Nanoparticle delivery of a prodrug-activating bacterial enzyme leads to anti-tumor responses. Nat Commun 2025; 16:3490. [PMID: 40221395 PMCID: PMC11993580 DOI: 10.1038/s41467-025-58548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Most cancer patients diagnosed with late-stage head and neck squamous cell carcinoma are treated with chemoradiotherapy, which can lead to toxicity. One potential alternative is tumor-limited conversion of a prodrug into its cytotoxic form. We reason this could be achieved by transient and tumor-specific expression of purine nucleoside phosphorylase (PNP), an Escherichia coli enzyme that converts fludarabine into 2-fluoroadenine, a potent cytotoxic drug. To efficiently express bacterial PNP in tumors, we evaluate 44 chemically distinct lipid nanoparticles (LNPs) using species-agnostic DNA barcoding in tumor-bearing mice. Our lead LNP, designated LNP intratumoral (LNPIT), delivers mRNA that leads to PNP expression in vivo. Additionally, in tumor cells transfected with LNPIT, we observe upregulated pathways related to RNA and protein metabolism, providing insight into the tumor cell response to LNPs in vivo. When mice are treated with LNPIT-PNP, then subsequently given fludarabine phosphate, we observe anti-tumor responses. These data are consistent with an approach in which LNP-mRNA expression of a bacterial enzyme activates a prodrug in solid tumors.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Regina Rab
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yuning Hou
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Bhagelu R Achyut
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Garanzini DP, Micucci MA, Torres Lopez A, Perez O, Calamante G, Del Medico Zajac MP. Protection Against Rabies Induced by the Non-Replicative Viral Vectors MVA and Ad5 Expressing Rabies Glycoprotein. Viruses 2025; 17:476. [PMID: 40284919 PMCID: PMC12031158 DOI: 10.3390/v17040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Rabies is a zoonotic viral disease that is preventable through vaccination. Effective control strategies should follow the "One Health" concept, as targeting zoonotic pathogens at their animal source is the most effective and cost-efficient approach to protecting human health. The aim of this study was to develop and evaluate two third-generation anti-rabies vaccines based on non-replicative viral vectors, MVA and Ad5, both expressing rabies virus (RABV) glycoprotein (MVA-RG and Ad-RG). MVA-RG was produced using a platform developed in our laboratory, while Ad-RG was generated using a commercial kit. Protection against rabies was assessed in a mouse intracerebral (IC) RABV challenge model. Our results demonstrated that both vectors provided protection against RABV. MVA-RG and Ad-RG administered in two homologous doses conferred 60% and 60-100% protection against RABV challenge, respectively. The survival rate was influenced by the viral vector, the dose, and the immunization scheme. Remarkably, to our knowledge, our study is the first to report 100% protection against IC RABV challenge using a non-replicative Ad5 in a homologous immunization scheme. These promising results support future evaluation of this vaccine candidate in target animals.
Collapse
Affiliation(s)
- Debora Patricia Garanzini
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nicolás Repetto y De Los Reseros S/N, Hurlingham B1686IGC, Buenos Aires, Argentina; (D.P.G.); (A.T.L.); (G.C.)
| | - Matias Ariel Micucci
- Servicio de Vacuna Antirrábica (SVAR), Instituto Nacional de Producción de Biológicos, ANLIS-“Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina; (M.A.M.); (O.P.)
| | - Annalies Torres Lopez
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nicolás Repetto y De Los Reseros S/N, Hurlingham B1686IGC, Buenos Aires, Argentina; (D.P.G.); (A.T.L.); (G.C.)
| | - Oscar Perez
- Servicio de Vacuna Antirrábica (SVAR), Instituto Nacional de Producción de Biológicos, ANLIS-“Dr. Carlos G. Malbrán”, Av. Vélez Sarsfield 563, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina; (M.A.M.); (O.P.)
| | - Gabriela Calamante
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nicolás Repetto y De Los Reseros S/N, Hurlingham B1686IGC, Buenos Aires, Argentina; (D.P.G.); (A.T.L.); (G.C.)
| | - Maria Paula Del Medico Zajac
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nicolás Repetto y De Los Reseros S/N, Hurlingham B1686IGC, Buenos Aires, Argentina; (D.P.G.); (A.T.L.); (G.C.)
| |
Collapse
|
5
|
Liu W, Li Y, Li X, Wang F, Qi R, Zhu T, Li J. Pooled Analysis of the Effect of Pre-Existing Ad5 Neutralizing Antibodies on the Immunogenicity of Adenovirus Type 5 Vector-Based COVID-19 Vaccine from Eight Clinical Trials. Vaccines (Basel) 2025; 13:333. [PMID: 40266233 PMCID: PMC11945733 DOI: 10.3390/vaccines13030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Pre-existing adenovirus immunity restricts the utilization of adenovirus-vectored vaccines. The current study aims to conduct a pooled analysis of eight clinical trials to evaluate the influence of pre-existing Ad5 neutralizing antibodies on immunogenicity of Ad5-nCoV. Methods: The primary outcome indicator of this pooled analysis is the geometric mean titers (GMTs) of live SARS-CoV-2 NAbs against the wild-type strain on day 28 post-vaccination. Participants were divided into two cohorts: an adolescent cohort comprising individuals aged 6-17 years and an adult cohort with individuals aged 18 years and older. Within each cohort, individuals were further categorized into three subgroups based on their Ad5-nCoV vaccination schedules: one subgroup received a single intramuscular dose as the primary regimen (Ad5-IM-prime), another received an intramuscular dose as the heterologous prime-boost regimen (Ad5-IM-boost), and the last subgroup received an aerosolized dose as the heterologous prime-boost regimen (Ad5-IH-boost). Results: A total of 3512 participants were included in this pooled analysis. In the Ad5-IM-prime subgroup, there were 1001 adolescents and 1450 adults; in the Ad5-IM-boost subgroup, there were 65 adolescents and 396 adults; and in the Ad5-IH-boost subgroup, there were 207 adolescents and 393 adults. In the adult cohort, the GMTs of NAbs against wild-type SARS-CoV-2 on day 28 post-vaccination for the Ad5-IM-prime, Ad5-IM-boost, and Ad5-IH-boost subgroups were 35.6 (95% CI: 32.0, 39.7), 358.3 (95% CI: 267.6, 479.6), and 2414.1 (95% CI: 2006.9, 2904.0), respectively, with negative (less than 1:12) pre-existing NAb titers compared to 10.7 (95% CI: 9.1, 12.6), 116.9 (95% CI: 84.9, 161.1), and 762.7 (95% CI: 596.2, 975.8), respectively, with high (greater than 1:1000) pre-existing NAb titers. A similar trend was observed in the adolescent cohort, where pre-existing immunity was found to reduce the peak of live SARS-CoV-2 Nabs post-vaccination. Conclusions: Regardless of whether Ad5-nCoV is administered as a primary vaccination regimen or as a heterologous prime-boost strategy, a negative impact on immunogenicity can still be observed in the presence of high pre-existing immunity. However, when primary immunization is achieved with inactivated COVID-19 vaccines, aerosol inhalation can significantly enhance the immunogenicity of Ad5-nCoV compared to intramuscular injections of Ad5-nCoV as a booster.
Collapse
Affiliation(s)
- Wenqing Liu
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Yuqing Li
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Xiaolong Li
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Feiyu Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Runjie Qi
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Jingxin Li
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Provincial Academy of Preventive Medicine, Nanjing 210009, China
| |
Collapse
|
6
|
Lu C, Li Y, Cummings JR, Banskota S. Delivery of genome editors with engineered virus-like particles. Methods Enzymol 2025; 712:475-516. [PMID: 40121085 DOI: 10.1016/bs.mie.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Genome editing technologies have revolutionized biomedical sciences and biotechnology. However, their delivery in vivo remains one of the major obstacles for clinical translation. Here, we introduce various emerging genome editing systems and review different delivery systems have been developed to realize the promise of in vivo gene editing therapies. In particular, we focus on virus-like particles (VLPs), an emerging delivery platform and provide in depth analysis on recent advancements to improve VLPs delivery potential and highlight opportunities for future improvements. To this end, we also provide detail workflows for engineered VLP (eVLP) selection, production, and purification, along with methods for characterization and validation.
Collapse
Affiliation(s)
- Christopher Lu
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States
| | - Yuanhang Li
- Biological Design Center, Boston University, Boston, MA, United States; Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Jacob Ryan Cummings
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States
| | - Samagya Banskota
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States.
| |
Collapse
|
7
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2025; 25:195-211. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Yun JS, Shin E, Lee YR, Lee JA, Lee H, Kim JS, Shin SJ, Ha SJ, Lee SW, Kim D, Yoo JS, Jeong HS. Immunogenicity and protective efficacy of a multi-antigenic adenovirus-based vaccine candidate against Mycobacterium tuberculosis. Front Microbiol 2025; 16:1492268. [PMID: 39927262 PMCID: PMC11802578 DOI: 10.3389/fmicb.2025.1492268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction The inadequate efficacy of the Bacillus Calmette-Guérin (BCG) vaccine against adult pulmonary tuberculosis (TB) necessitates the development of new and effective vaccines. Human adenovirus serotype 5 (Ad5), which induces T-cell response, is a widely used viral vector. In this study, we aimed to evaluate the efficacy of a multi-antigenic recombinant Ad5 vectored vaccine and determine the optimal immunization route for enhanced immune response against Mycobacterium tuberculosis. Methods We constructed a multi-antigenic recombinant Ad5 vectored vaccine expressing four antigens (Ag85B-ESAT6-MPT64-Rv2660c) of M. tuberculosis (rAd-TB4), immunized with rAd-TB4 (5 × 107 infectious virus units/mouse) twice at an interval of 4 weeks starting at 10 weeks after BCG priming, and evaluated its boosting efficacy in a BCG-primed mouse model, and determined the optimal immunization route. Results Compared with the BCG-only (2 × 105 colony forming units/mouse), subcutaneous injection of rAd-TB4 (1 × 107 infectious virus units/mL; two doses) elicited a T-cell response and cytokine production in lung lymphocytes and splenocytes. rAd-TB4 immunization significantly reduced bacterial loads and inflamed lung areas compared to BCG immunization (p < 0.01) and protected against the H37Rv challenge performed at 17 weeks of BCG priming. RNA sequencing of the whole blood of rAd-TB4-vaccinated mice collected pre- and, 1 and 4 weeks post-infection, identified differentially expressed genes associated with immune and inflammatory responses, especially those in the Wnt signaling pathway. Conclusion Our results indicate that rAd-TB4 immunization enhances the immune response to the vaccine boosting antigens in BCG-primed mice, making it a potential adult pulmonary TB vaccine candidate.
Collapse
Affiliation(s)
- Jin-Seung Yun
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eunkyung Shin
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, Chungbuk, Republic of Korea
| | - Jung-Ah Lee
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hyeokjin Lee
- Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jong-Seok Kim
- Department of Cell Biology, College of Medicine, Myunggok Medical Research Institute, Konyang University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Won Lee
- Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Dokeun Kim
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jung-Sik Yoo
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Hye-Sook Jeong
- Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| |
Collapse
|
9
|
Lin Y, Liao X, Cao X, Zhang Z, Wang X, He X, Liao H, Ju B, Qi F, Xu H, Ren Z, Wang Y, Hu Z, Yang J, Fu YX, Zhao J, Zhang Z, Peng H. Sequential intranasal booster triggers class switching from intramuscularly primed IgG to mucosal IgA against SARS-CoV-2. J Clin Invest 2025; 135:e175233. [PMID: 39808503 PMCID: PMC11870729 DOI: 10.1172/jci175233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
The persistent emergence of COVID-19 variants and recurrent waves of infection worldwide underscores the urgent need for vaccines that effectively reduce viral transmission and prevent infections. Current intramuscular (IM) COVID-19 vaccines inadequately protect the upper respiratory mucosa. In response, we have developed a nonadjuvanted, IFN-armed SARS-CoV-2 fusion protein vaccine with IM priming and intranasal (IN) boost sequential immunization. Our study showed that this sequential vaccination strategy of the IM+IN significantly enhanced both upper respiratory and systemic antiviral immunity in a mouse model, characterized by the rapid increase in systemic and mucosal T and B cell responses, particularly the mucosal IgA antibody response. The IN boost triggered a swift secondary immune response, rapidly inducing antigen-specific IgA+ B cells. Further B cell receptor-seq (BCR-seq) analysis indicated that these IgA+ B cells primarily arose through direct class switching from preexisting IgG+ B cells in draining lymph nodes. Notably, our clinical studies revealed that the IN boost after IM vaccination elicited a robust systemic IgA antibody response in humans, as measured in serum. Thus, we believe that our cytokine-armed protein vaccine presents a promising strategy for inducing rapid and potent mucosal protection against respiratory viral infections.
Collapse
Affiliation(s)
- Yifan Lin
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuejiao Liao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xuezhi Cao
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiuye Wang
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Xiaomeng He
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | | | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hairong Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jincun Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hua Peng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering (Basel) 2024; 12:7. [PMID: 39851281 PMCID: PMC11759177 DOI: 10.3390/bioengineering12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
In spite of significant advancements in diagnosis and treatment, cancer remains one of the major threats to human health due to its ability to cause disease with high morbidity and mortality. A multifactorial and multitargeted approach is required towards intervention of the multitude of signaling pathways associated with carcinogenesis inclusive of angiogenesis and metastasis. In this context, plants provide an immense source of phytotherapeutics that show great promise as anticancer drugs. There is increasing epidemiological data indicating that diets rich in vegetables and fruits could decrease the risks of certain cancers. Several studies have proved that natural plant polyphenols, such as flavonoids, lignans, phenolic acids, alkaloids, phenylpropanoids, isoprenoids, terpenes, and stilbenes, could be used in anticancer prophylaxis and therapeutics by recruitment of mechanisms inclusive of antioxidant and anti-inflammatory activities and modulation of several molecular events associated with carcinogenesis. The current review discusses the anticancer activities of principal phytochemicals with focus on signaling circuits towards targeted cancer prophylaxis and therapy. Also addressed are plant-derived anti-cancer vaccines, nanoparticles, monoclonal antibodies, and immunotherapies. This review article brings to light the importance of plants and plant-based platforms as invaluable, low-cost sources of anti-cancer molecules of particular applicability in resource-poor developing countries.
Collapse
Affiliation(s)
- Ghyda Murad Hashim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
11
|
Zhang W, Sloan A, Prévost J, Tamming L, Raman S, Pfeifle A, Gravel C, Chen W, Hashem AM, Wu J, Cao J, Johnston MJW, Wang L, Sauve S, Rosu-Myles M, Kobasa D, Safronetz D, Li X. Dissecting immunological mechanisms underlying influenza viral nucleoprotein-induced mucosal immunity against diverse viral strains. Emerg Microbes Infect 2024; 13:2427792. [PMID: 39508450 PMCID: PMC11583363 DOI: 10.1080/22221751.2024.2427792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
The nucleoprotein (NP) of type A influenza virus (IAV) is highly conserved across all virus strains, making it an attractive candidate antigen for universal vaccines. While various studies have explored NP-induced mucosal immunity, here we interrogated the mechanistic differences between intramuscular (IM) and intranasal (IN) delivery of a recombinant adenovirus carrying NP fused with a bifunctional CD40 ligand. Despite being less effective than IM delivery in inducing systemic cellular immune responses and antibody-dependent cellular cytotoxicity (ADCC), IN immunization elicited superior antigen-specific recall humoral and cellular response in the nasal associated lymphoid tissue (NALT) of the upper respiratory tract, the initial site of immune recognition and elimination of inhaled pathogens. IN vaccination also induced significantly stronger pulmonary T cell responses in the lower respiratory tract than IM vaccination, in particular the CD8 T cells. Moreover, blocking lymphocyte circulation abrogated IM but not IN immunization induced protection, illustrating the critical role of local memory immune response upon viral infection. Notably, the CD40-targeted nasal delivery not only improved the magnitude but also the breadth of protection, including against lethal challenge with a newly isolated highly pathogenic avian H5N1 strain. These findings are informative for the design of universal mucosal vaccines, where the predominant mode of protection is independent of neutralizing antibodies.
Collapse
Affiliation(s)
- Wanyue Zhang
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Angela Sloan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Jérémie Prévost
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Levi Tamming
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Sathya Raman
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Annabelle Pfeifle
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jianguo Wu
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Michael J. W. Johnston
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Chemistry, Carlton University, Ottawa, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Sauve
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Darwyn Kobasa
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
12
|
Chi WY, Hu Y, Huang HC, Kuo HH, Lin SH, Kuo CTJ, Tao J, Fan D, Huang YM, Wu AA, Hung CF, Wu TC. Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens. J Biomed Sci 2024; 31:94. [PMID: 39379923 PMCID: PMC11463125 DOI: 10.1186/s12929-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Hu
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui-Hsuan Kuo
- Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Tien Jimmy Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Yi-Min Huang
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Annie A Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Rader NA, Lee KS, Loes AN, Miller-Stump OA, Cooper M, Wong TY, Boehm DT, Barbier M, Bevere JR, Heath Damron F. Influenza virus strains expressing SARS-CoV-2 receptor binding domain protein confer immunity in K18-hACE2 mice. Vaccine X 2024; 20:100543. [PMID: 39221180 PMCID: PMC11364132 DOI: 10.1016/j.jvacx.2024.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.
Collapse
Affiliation(s)
- Nathaniel A. Rader
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Katherine S. Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Olivia A. Miller-Stump
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| |
Collapse
|
14
|
Luo X, Liang R, Liang L, Tang A, Hou S, Ding J, Li Z, Tang X. Advancements, challenges, and future perspectives in developing feline herpesvirus 1 as a vaccine vector. Front Immunol 2024; 15:1445387. [PMID: 39328406 PMCID: PMC11424437 DOI: 10.3389/fimmu.2024.1445387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
As the most prevalent companion animal, cats are threatened by numerous infectious diseases and carry zoonotic pathogens such as Toxoplasma gondii and Bartonella henselae, which are the primary causes of human toxoplasmosis and cat-scratch disease. Vaccines play a crucial role in preventing and controlling the spread of diseases in both humans and animals. Currently, there are only three core vaccines available to prevent feline panleukopenia, feline herpesvirus, and feline calicivirus infections, with few vaccines available for other significant feline infectious and zoonotic diseases. Feline herpesvirus, a major component of the core vaccine, offers several advantages and a stable genetic manipulation platform, making it an ideal model for vaccine vector development to prevent and control feline infectious diseases. This paper reviews the technologies involved in the research and development of the feline herpesvirus vaccine vector, including homologous recombination, CRISPR/Cas9, and bacterial artificial chromosomes. It also examines the design and effectiveness of expressing antigens of other pathogens using the feline herpesvirus as a vaccine vector. Additionally, the paper analyzes existing technical bottlenecks and challenges, providing an outlook on its application prospects. The aim of this review is to provide a scientific basis for the research and development of feline herpesvirus as a vaccine vector and to offer new ideas for the prevention and control of significant feline infectious and zoonotic diseases.
Collapse
Affiliation(s)
- Xinru Luo
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aoxing Tang
- Shanghai Veterinary Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaohua Hou
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zibin Li
- College of Life and Health, Dalian University, Dalian, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) and Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs (MARA), Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Yang K, Zeng Y, Wu X, Li J, Guo J. Strategies for developing self-assembled nanoparticle vaccines against SARS-CoV-2 infection. Front Immunol 2024; 15:1392898. [PMID: 39351240 PMCID: PMC11440195 DOI: 10.3389/fimmu.2024.1392898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
In the recent history of the SARS-CoV-2 outbreak, vaccines have been a crucial public health tool, playing a significant role in effectively preventing infections. However, improving the efficacy while minimizing side effects remains a major challenge. In recent years, there has been growing interest in nanoparticle-based delivery systems aimed at improving antigen delivery efficiency and immunogenicity. Among these, self-assembled nanoparticles with varying sizes, shapes, and surface properties have garnered considerable attention. This paper reviews the latest advancements in the design and development of SARS-CoV-2 vaccines utilizing self-assembled materials, highlighting their advantages in delivering viral immunogens. In addition, we briefly discuss strategies for designing a broad-spectrum universal vaccine, which provides insights and ideas for dealing with possible future infectious sarbecoviruses.
Collapse
Affiliation(s)
- Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Youqin Zeng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xinyu Wu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jia Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
16
|
Saruuldalai E, Lee HH, Lee YS, Hong EK, Ro S, Kim Y, Ahn T, Park JL, Kim SY, Shin SP, Im WR, Cho E, Choi BK, Jang JJ, Choi BH, Jung YS, Kim IH, Lee SJ, Lee YS. Adenovirus expressing nc886, an anti-interferon and anti-apoptotic non-coding RNA, is an improved gene delivery vector. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102270. [PMID: 39171141 PMCID: PMC11338102 DOI: 10.1016/j.omtn.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Recombinant adenovirus (rAdV) vector is the most promising vehicle to deliver an exogenous gene into target cells and is preferred for gene therapy. Exogenous gene expression from rAdV is often too inefficient to induce phenotypic changes and the amount of administered rAdV must be very high to achieve a therapeutic dose. However, it is often hampered because a high dose of rAdV is likely to induce cytotoxicity by activating immune responses. nc886, a 102-nucleotide non-coding RNA that is transcribed by RNA polymerase III, acts as an immune suppressor and a facilitator of AdV entry into the nucleus. Therefore, in this study, we have constructed an rAdV expressing nc886 (AdV:nc886) to explore whether AdV:nc886 overcomes the aforementioned drawbacks of conventional rAdV vectors. When infected into mouse cell lines and mice, AdV:nc886 expresses a sufficient amount of nc886, which suppresses the induction of interferon-stimulated genes and apoptotic pathways triggered by AdV infection. As a result, AdV:nc886 is less cytotoxic and produces more rAdV-delivered gene products, compared with the parental rAdV vector lacking nc886. In conclusion, this study demonstrates that the nc886-expressing rAdV could become a superior gene delivery vehicle with greater safety and higher efficiency for in vivo gene therapy.
Collapse
Affiliation(s)
- Enkhjin Saruuldalai
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Hwi-Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Eun Kyung Hong
- Research Institute and Hospital, National Cancer Center, Goyang 10408, Korea
| | - Soyoun Ro
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Yeochan Kim
- Department of Life Science, Handong Global University, Pohang 37554, Korea
| | - TaeJin Ahn
- Department of Life Science, Handong Global University, Pohang 37554, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113, Korea
| | - Seung-Phil Shin
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Wonkyun Ronny Im
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Eunjung Cho
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Beom K. Choi
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jiyoung Joan Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Byung-Han Choi
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Yuh-Seog Jung
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - In-Hoo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| | - Sang-Jin Lee
- Division of Immuno-Oncology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
17
|
Silva-Pilipich N, Smerdou C. A Dual-Armed Oncolytic Virus Shows Clinical Efficacy in Advanced Solid Cancers. Clin Cancer Res 2024; 30:3649-3651. [PMID: 38935348 DOI: 10.1158/1078-0432.ccr-24-1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
An oncolytic adenovirus armed with tumor necrosis factor-α and interleukin-2 was tested in patients with advanced solid tumors. Antitumor effects were observed in both treated and non-treated lesions, leading to long-term survival in some patients. This clinical trial shows the potential of oncolytic virotherapy for patients refractory to standard therapies. See related article by Pakola et al., p. 3715.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- Division of DNA and RNA Medicine, CCUN, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, Pamplona, Spain
| | - Cristian Smerdou
- Division of DNA and RNA Medicine, CCUN, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, Pamplona, Spain
| |
Collapse
|
18
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
19
|
Santos LC, Fernandes AMS, Alves IA, Serafini MR, Silva LDSE, de Freitas HF, Leite LCC, Santos CC. Trends in Viral Vector-Based Vaccines for Tuberculosis: A Patent Review (2010-2023). Vaccines (Basel) 2024; 12:876. [PMID: 39204002 PMCID: PMC11359462 DOI: 10.3390/vaccines12080876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Tuberculosis (TB) is an ancient global public health problem. Several strategies have been applied to develop new and more effective vaccines against TB, from attenuated or inactivated mycobacteria to recombinant subunit or genetic vaccines, including viral vectors. This review aimed to evaluate patents filed between 2010 and 2023 for TB vaccine candidates. It focuses on viral vector-based strategies. A search was carried out in Espacenet, using the descriptors "mycobacterium and tuberculosis" and the classification A61K39. Of the 411 patents preliminarily identified, the majority were related to subunit vaccines, with 10 patents based on viral vector platforms selected in this study. Most of the identified patents belong to the United States or China, with a concentration of patent filings between 2013 and 2023. Adenoviruses were the most explored viral vectors, and the most common immunodominant Mycobacterium tuberculosis (Mtb) antigens were present in all the selected patents. The majority of patents were tested in mouse models by intranasal or subcutaneous route of immunization. In the coming years, an increased use of this platform for prophylactic and/or therapeutic approaches for TB and other diseases is expected. Along with this, expanding knowledge about the safety of this technology is essential to advance its use.
Collapse
Affiliation(s)
- Lana C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Antônio Márcio Santana Fernandes
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Izabel Almeida Alves
- Departamento do Medicamento, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Estado da Bahia, Salvador 41150-000, BA, Brazil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal do Sergipe, São Cristóvão 49100-000, SE, Brazil;
| | - Leandra da Silva e Silva
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | | | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Carina C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| |
Collapse
|
20
|
Salauddin M, Saha S, Hossain MG, Okuda K, Shimada M. Clinical Application of Adenovirus (AdV): A Comprehensive Review. Viruses 2024; 16:1094. [PMID: 39066256 PMCID: PMC11281619 DOI: 10.3390/v16071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Adenoviruses are non-enveloped DNA viruses that cause a wide range of symptoms, from mild infections to life-threatening diseases in a broad range of hosts. Due to the unique characteristics of these viruses, they have also become a vehicle for gene-transfer and cancer therapeutic instruments. Adenovirus vectors can be used in gene therapy by modifying wild-type viruses to render them replication-defective. This makes it possible to swap out particular viral genes for segments that carry therapeutic genes and to employ the resultant vector as a means of delivering genes to specified tissues. In this review, we outline the progressive development of adenovirus vectors, exploring their characteristics, genetic modifications, and range of uses in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing gene therapy, cancer therapy, immunotherapy, and the latest breakthroughs in vaccine development for various diseases.
Collapse
Affiliation(s)
- Md. Salauddin
- Department of Microbiology and Public Health, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna 9202, Bangladesh;
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (S.S.); (M.G.H.)
| | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (S.S.); (M.G.H.)
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan;
| |
Collapse
|
21
|
Park JK, Lee EB, Winthrop KL. What rheumatologists need to know about mRNA vaccines: current status and future of mRNA vaccines in autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:687-695. [PMID: 38413167 DOI: 10.1136/ard-2024-225492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Messenger RNA (mRNA) vaccines as a novel vaccine platform offer new tools to effectively combat both emerging and existing pathogens which were previously not possible. The 'plug and play' feature of mRNA vaccines enables swift design and production of vaccines targeting complex antigens and rapid incorporation of new vaccine constituents as needed. This feature makes them likely to be adopted for widespread clinical use in the future.Currently approved mRNA vaccines include only those against SARS-CoV-2 virus. These vaccines demonstrate robust immunogenicity and offer substantial protection against severe disease. Numerous mRNA vaccines against viral pathogens are in the early to late phase of development. Several mRNA vaccines for influenza are tested in clinical trials, with some already in phase 3 studies. Other vaccines in the early and late phases of development include those targeting Cytomegalovirus, varicella zoster virus, respiratory syncytial virus and Epstein-Barr virus. Many of these vaccines will likely be indicated for immunosuppressed populations including those with autoimmune inflammatory rheumatic diseases (AIIRD). This review focuses on the mechanism, safety and efficacy of mRNA in general and summarises the status of mRNA vaccines in development for common infectious diseases of particular interest for patients with AIIRD.
Collapse
Affiliation(s)
- Jin Kyun Park
- Rheumatology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Eun Bong Lee
- Internal Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea (the Republic of)
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
22
|
Casado-Fernández G, Cantón J, Nasarre L, Ramos-Martín F, Manzanares M, Sánchez-Menéndez C, Fuertes D, Mateos E, Murciano-Antón MA, Pérez-Olmeda M, Cervero M, Torres M, Rodríguez-Rosado R, Coiras M. Pre-existing cell populations with cytotoxic activity against SARS-CoV-2 in people with HIV and normal CD4/CD8 ratio previously unexposed to the virus. Front Immunol 2024; 15:1362621. [PMID: 38812512 PMCID: PMC11133563 DOI: 10.3389/fimmu.2024.1362621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction HIV-1 infection may produce a detrimental effect on the immune response. Early start of antiretroviral therapy (ART) is recommended to preserve the integrity of the immune system. In fact, people with HIV (PWH) and normal CD4/CD8 ratio appear not to be more susceptible to severe forms of COVID-19 than the general population and they usually present a good seroconversion rate in response to vaccination against SARS-CoV-2. However, few studies have fully characterized the development of cytotoxic immune populations in response to COVID-19 vaccination in these individuals. Methods In this study, we recruited PWH with median time of HIV-1 infection of 6 years, median CD4/CD8 ratio of 1.0, good adherence to ART, persistently undetectable viral load, and negative serology against SARS-CoV-2, who then received the complete vaccination schedule against COVID-19. Blood samples were taken before vaccination against COVID-19 and one month after receiving the complete vaccination schedule. Results PWH produced high levels of IgG against SARS-CoV-2 in response to vaccination that were comparable to healthy donors, with a significantly higher neutralization capacity. Interestingly, the cytotoxic activity of PBMCs from PWH against SARS-CoV-2-infected cells was higher than healthy donors before receiving the vaccination schedule, pointing out the pre-existence of activated cell populations with likely unspecific antiviral activity. The characterization of these cytotoxic cell populations revealed high levels of Tgd cells with degranulation capacity against SARS-CoV-2-infected cells. In response to vaccination, the degranulation capacity of CD8+ T cells also increased in PWH but not in healthy donors. Discussion The full vaccination schedule against COVID-19 did not modify the ability to respond against HIV-1-infected cells in PWH and these individuals did not show more susceptibility to breakthrough infection with SARS-CoV-2 than healthy donors after 12 months of follow-up. These results revealed the development of protective cell populations with broad-spectrum antiviral activity in PWH with normal CD4/CD8 ratio and confirmed the importance of early ART and treatment adherence to avoid immune dysfunctions.
Collapse
Affiliation(s)
- Guiomar Casado-Fernández
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Juan Cantón
- PhD Program in Health Sciences, Faculty of Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - Laura Nasarre
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Ramos-Martín
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mario Manzanares
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Aranzazu Murciano-Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Mayte Pérez-Olmeda
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Serology Service, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rafael Rodríguez-Rosado
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases [Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC)], Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
23
|
Zhang Z, Guo X, Hou W, Zou X, Wang Y, Liu S, Lu Z. User-Friendly Replication-Competent MAdV-1 Vector System with a Cloning Capacity of 3.3 Kilobases. Viruses 2024; 16:761. [PMID: 38793642 PMCID: PMC11126015 DOI: 10.3390/v16050761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Mouse adenoviruses (MAdV) play important roles in studying host-adenovirus interaction. However, easy-to-use reverse genetics systems are still lacking for MAdV. An infectious plasmid pKRMAV1 was constructed by ligating genomic DNA of wild-type MAdV-1 with a PCR product containing a plasmid backbone through Gibson assembly. A fragment was excised from pKRMAV1 by restriction digestion and used to generate intermediate plasmid pKMAV1-ER, which contained E3, fiber, E4, and E1 regions of MAdV-1. CMV promoter-controlled GFP expression cassette was inserted downstream of the pIX gene in pKMAV1-ER and then transferred to pKRMAV1 to generate adenoviral plasmid pKMAV1-IXCG. Replacement of transgene could be conveniently carried out between dual BstZ17I sites in pKMAV1-IXCG by restriction-assembly, and a series of adenoviral plasmids were generated. Recombinant viruses were rescued after transfecting linearized adenoviral plasmids to mouse NIH/3T3 cells. MAdV-1 viruses carrying GFP or firefly luciferase genes were characterized in gene transduction, plaque-forming, and replication in vitro or in vivo by observing the expression of reporter genes. The results indicated that replication-competent vectors presented relevant properties of wild-type MAdV-1 very well. By constructing viruses bearing exogenous fragments with increasing size, it was found that MAdV-1 could tolerate an insertion up to 3.3 kb. Collectively, a replication-competent MAdV-1 vector system was established, which simplified procedures for the change of transgene or modification of E1, fiber, E3, or E4 genes.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yongjin Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Shuqing Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| |
Collapse
|
24
|
Zhang Z, Yang W, Chen Z, Chi H, Wu S, Zheng W, Jin R, Wang B, Wang Y, Huo N, Zhang J, Song X, Xu L, Zhang J, Hou L, Chen W. A causal multiomics study discriminates the early immune features of Ad5-vectored Ebola vaccine recipients. Innovation (N Y) 2024; 5:100603. [PMID: 38745762 PMCID: PMC11092886 DOI: 10.1016/j.xinn.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenjing Yang
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zhengshan Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haoang Chi
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
- Intelligent Game and Decision Lab, Academy of Military Science, Beijing 100091, China
| | - Shipo Wu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wanru Zheng
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruochun Jin
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Busen Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yudong Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Nan Huo
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jinlong Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaohong Song
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liyang Xu
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Jun Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lihua Hou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
25
|
Piñón Hofbauer J, Guttmann-Gruber C, Wally V, Sharma A, Gratz IK, Koller U. Challenges and progress related to gene editing in rare skin diseases. Adv Drug Deliv Rev 2024; 208:115294. [PMID: 38527624 DOI: 10.1016/j.addr.2024.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy. Here, we explore current advances and challenges related to gene editing in rare skin diseases, including different strategies tailored to mutation type and structural organization of the affected gene, considerations for in vivo and ex vivo applications, the critical issue of delivery into the skin, and immune aspects of therapy. Against the backdrop of a landmark FDA approval for the first re-dosable gene replacement therapy for a rare genetic skin disorder, gene editing approaches are inching closer to the clinics and the possibility of a local permanent cure for patients affected by these disorders.
Collapse
Affiliation(s)
- Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anshu Sharma
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Iris K Gratz
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
26
|
Shin SC, Vickman RE, Filimon B, Yang Y, Hu Z, Mangold KA, Prabhakar BS, Schreiber H, Xu W. The safety and efficacy of systemic delivery of a new liver-de-targeted TGFβ signaling inhibiting adenovirus in an immunocompetent triple negative mouse mammary tumor model. Cancer Gene Ther 2024; 31:574-585. [PMID: 38267626 PMCID: PMC11016465 DOI: 10.1038/s41417-024-00735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Aberrant TGFβ signaling is linked to metastasis and tumor immune escape of many cancers including metastatic triple negative breast cancer (mTNBC). Previously, we have found that oncolytic adenoviruses expressing a TGFβ signaling inhibitory protein (sTGFβRIIFc) induced immune activation in a mouse TNBC (4T1) immunocompetent subcutaneous model with intratumoral injection. Systemic administration of adenoviruses can be a superior route to treat mTNBC but faces the challenges of increased toxicity and viral clearance. Thus, we created a liver-de-targeted sTGFβRIIFc- and LyP-1 peptide-expressing adenovirus (mHAdLyp.sT) with enhanced breast cancer cell tropism. Its safety and immune response features were profiled in the 4T1 model. Our data showed that the systemic administration of mHAdLyp.sT resulted in reduced hepatic and systemic toxicity. mHAdLyp.sT was also effective in increasing Th1 cytokines and anti-tumor cell populations by cytokine analysis, spleen/tumor qRT-PCR, and flow cytometry. We further tested the therapeutic effects of mHAdLyp.sT alone and in combination with immune checkpoint inhibitors (ICIs). mHAdLyp.sT alone and with all ICI combinations elicited significant inhibition of lung metastasis by histological analysis. When mHAdLyp.sT was combined with both anti-PD-1 and anti-CTLA-4 antibodies, primary 4T1 tumor growth was also significantly inhibited. We are confident in advancing this new treatment option for mTNBC.
Collapse
Affiliation(s)
- Soon Cheon Shin
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
| | - Renee E Vickman
- Center for Personalized Cancer Care, Department of Surgery, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
| | - Beniamin Filimon
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
| | - Yuefeng Yang
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
- Department of Experimental Medical Science and Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zebin Hu
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA
- National Institutes for Food and Drug Control, Beijing, China
| | - Kathy A Mangold
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Endeavor Health Medical Group, Evanston, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Weidong Xu
- Cancer Gene Therapy Program, Department of Medicine, NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Endeavor Health Medical Group, Evanston, IL, USA.
| |
Collapse
|
27
|
Chen J, Guo X, Zou X, Wang M, Yang C, Hou W, Sprindzuk MV, Lu Z. The Biodistribution of Replication-Defective Simian Adenovirus 1 Vector in a Mouse Model. Viruses 2024; 16:550. [PMID: 38675893 PMCID: PMC11054548 DOI: 10.3390/v16040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The administration route affects the biodistribution of a gene transfer vector and the expression of a transgene. A simian adenovirus 1 vector carrying firefly luciferase and GFP reporter genes (SAdV1-GFluc) were constructed, and its biodistribution was investigated in a mouse model by bioluminescence imaging and virus DNA tracking with real-time PCR. Luciferase activity and virus DNA were mainly found in the liver and spleen after the intravenous administration of SAdV1-GFluc. The results of flow cytometry illustrated that macrophages in the liver and spleen as well as hepatocytes were the target cells. Repeated inoculation was noneffective because of the stimulated serum neutralizing antibodies (NAbs) against SAdV-1. A transient, local expression of low-level luciferase was detected after intragastric administration, and the administration could be repeated without compromising the expression of the reporter gene. Intranasal administration led to a moderate, constant expression of a transgene in the whole respiratory tract and could be repeated one more time without a significant increase in the NAb titer. An immunohistochemistry assay showed that respiratory epithelial cells and macrophages in the lungs were transduced. High luciferase activity was restricted at the injection site and sustained for a week after intramuscular administration. A compromised transgene expression was observed after a repeated injection. When these mice were intramuscularly injected for a third time with the human adenovirus 5 (HAdV-5) vector carrying a luciferase gene, the luciferase activity recovered and reached the initial level, suggesting that the sequential use of SAdV-1 and HAdV-5 vectors was practicable. In short, the intranasal inoculation or intramuscular injection may be the preferred administration routes for the novel SAdV-1 vector in vaccine development.
Collapse
Affiliation(s)
- Juan Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
- School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Xiaojuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Xiaohui Zou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Min Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Chunlei Yang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
- Henan Chemical Technician College, Kaifeng 475008, China
| | - Wenzhe Hou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| | - Matvey V. Sprindzuk
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, 220012 Minsk, Belarus;
| | - Zhuozhuang Lu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.C.); (X.G.); (X.Z.); (M.W.); (C.Y.); (W.H.)
| |
Collapse
|
28
|
Sood S, Matar MM, Kim J, Kinsella M, Rayavara K, Signer O, Henderson J, Rogers J, Chawla B, Narvaez B, Van Ry A, Kar S, Arnold A, Rice JS, Smith AM, Su D, Sparks J, Le Goff C, Boyer JD, Anwer K. Strong immunogenicity & protection in mice with PlaCCine: A COVID-19 DNA vaccine formulated with a functional polymer. Vaccine 2024; 42:1300-1310. [PMID: 38302336 DOI: 10.1016/j.vaccine.2024.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
DNA- based vaccines have demonstrated the potential as a safe and effective modality. PlaCCine, a DNA-based vaccine approach described subsequently relies on a synthetic DNA delivery system and is independent of virus or device. The synthetic functionalized polymer combined with DNA demonstrated stability over 12 months at 4C and for one month at 25C. Transfection efficiency compared to naked DNA increased by 5-15-fold in murine skeletal muscle. Studies of DNA vaccines expressing spike proteins from variants D614G (pVAC15), Delta (pVAC16), or a D614G + Delta combination (pVAC17) were conducted. Mice immunized intramuscular injection (IM) with pVAC15, pVAC16 or pVAC17 formulated with functionalized polymer and adjuvant resulted in induction of spike-specific humoral and cellular responses. Antibody responses were observed after one immunization. And endpoint IgG titers increased to greater than 1x 105 two weeks after the second injection. Neutralizing antibodies as determined by a pseudovirus competition assay were observed following vaccination with pVAC15, pVAC16 or pVAC17. Spike specific T cell immune responses were also observed following vaccination and flow cytometry analysis demonstrated the cellular immune responses included both CD4 and CD8 spike specific T cells. The immune responses in vaccinated mice were maintained for up to 14 months after vaccination. In an immunization and challenge study of K18 hACE2 transgenic mice pVAC15, pVAC16 and pVAC17 induced immune responses lead to decreased lung viral loads by greater than 90 % along with improved clinical score. These findings suggest that PlaCCine DNA vaccines are effective and stable and further development against emerging SARS-CoV-2 variants is warranted.
Collapse
Affiliation(s)
| | | | - Jessica Kim
- Imunon Inc., Lawrenceville, NJ, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Daishui Su
- Imunon Inc., Lawrenceville, NJ, United States
| | - Jeff Sparks
- Imunon Inc., Lawrenceville, NJ, United States
| | | | | | | |
Collapse
|
29
|
Varela ML, Comba A, Faisal SM, Argento A, Peña Aguelo JA, Candolfi M, Castro MG, Lowenstein PR. Cell and gene therapy in neuro-oncology. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:297-315. [PMID: 39341660 PMCID: PMC11441620 DOI: 10.1016/b978-0-323-90120-8.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The majority of primary brain tumors are gliomas, among which glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. GBM has a median survival of 18-24 months, and despite extensive research it remains incurable, thus novel therapies are urgently needed. The current standard of care is a combination of surgery, radiation, and chemotherapy, but still remains ineffective due to the invasive nature and high recurrence of gliomas. Gene therapy is a versatile treatment strategy investigated for multiple tumor types including GBM. In gene therapy, a variety of vectors are employed to deliver genes designed for different antitumoral effects. Also, over the past decades, stem cell biology has provided a new approach to cancer therapies. Stem cells can be used as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. Stem cell-based therapy allows targeted therapy that spares healthy brain tissue as well as establishes a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or even oncolytic viruses. This chapter describes the latest developments and the current trends in gene and cell-based therapy against GBM from both preclinical and clinical perspectives, including different gene therapy delivery systems, molecular targets, and stem cell therapies.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jorge A Peña Aguelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
30
|
Demidova A, Douguet L, Fert I, Wei Y, Charneau P, Majlessi L. Comparison of preclinical efficacy of immunotherapies against HPV-induced cancers. Expert Rev Vaccines 2024; 23:674-687. [PMID: 38978164 DOI: 10.1080/14760584.2024.2374287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Persistent infections with the human papilloma viruses, HPV16 and HPV18, are associated with multiple cancers. Although prophylactic vaccines that induce HPV-neutralizing antibodies are effective against primary infections, they have no effect on HPV-mediated malignancies against which there is no approved immuno-therapy. Active research is ongoing in the immunotherapy of these cancers. AREAS COVERED In this review, we compared the preclinical efficacy of vaccine platforms used to treat HPV-induced tumors in the standard model of mice grafted with TC-1 cells, which express the HPV16 E6 and E7 oncoproteins. We searched for the key words, 'HPV,' 'vaccine,' 'therapy,' 'E7,' 'tumor,' 'T cells', and 'mice' for the period from 2005 to 2023 in PubMed and found 330 publications. Among them, we selected the most relevant to extract preclinical antitumor results to enable cross-sectional comparison of their efficacy. EXPERT OPINION SECTION We compared these studies for HPV antigen design, immunization regimen, immunogenicity, and antitumor effect, considering their drawbacks and advantages. Among all strategies used in murine models, certain adjuvanted proteins and viral vectors showed the strongest antitumor effects, with the use of lentiviral vectors being the only approach to result in complete tumor eradication in 100% of experimental individuals while providing the longest-lasting memory.
Collapse
Affiliation(s)
- Anastasia Demidova
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Laëtitia Douguet
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Yu Wei
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | |
Collapse
|
31
|
Beladiya J, Kumar A, Vasava Y, Parmar K, Patel D, Patel S, Dholakia S, Sheth D, Boddu SHS, Patel C. Safety and efficacy of COVID-19 vaccines: A systematic review and meta-analysis of controlled and randomized clinical trials. Rev Med Virol 2024; 34:e2507. [PMID: 38282394 DOI: 10.1002/rmv.2507] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/24/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Vaccines against coronavirus disease 2019 (COVID-19) have been discovered within a very small duration of time as compared to the traditional way for the development of vaccines, which raised the question about the safety and efficacy of the approved vaccines. The purpose of this study is to look at the effectiveness and safety of vaccine platforms against the incidence of COVID-19. The literature search was performed on PubMed/Medline, Cochrane, and clinical trials.gov databases for studies published between 1 January 2020 and 19 February 2022. Preferred Reporting Items for Systemic Review and Meta-Analysis Statement guidelines were followed. Among 284 articles received by keywords, a total of 11 studies were eligible according to the inclusion and exclusion criteria (studies in special populations, e.g., pregnant women, paediatric patients, editorials, case reports, review articles, preclinical and in vitro studies) of the study. A total of 247,186 participants were considered for randomisation at baseline, among them, 129,572 (52.42%) were provided with vaccine (Intervention group) and 117,614 (47.58%) with the placebo (Control group). A pooled fold change estimation of 0.19 (95% CI: 0.12-0.31, p < 0.0001) showed significant protection against the incidence of COVID-19 in the vaccines received group versus the placebo group. mRNA based, inactivated vaccines and non-replicating viral vector-based vaccines showed significantly protection against the incidence of COVID-19 compared to placebo with pooled fold change estimation was 0.08 (95% CI: 0.06-0.10), 0.20 (95% CI: 0.14-0.29) and 0.36 (95% CI: 0.28-0.46), respectively. Injection site discomfort and fatigue were the most common side effect observed in mRNA, non-replicating viral vector, inactivated, and protein subunit-based vaccines. All the approved vaccines were found safe and efficacious but mRNA-based vaccines were found to be more efficacious against SARS-CoV-2 than other platforms.
Collapse
Affiliation(s)
- Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Anup Kumar
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Yogesh Vasava
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Krupanshu Parmar
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Dipanshi Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Sandip Dholakia
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Devang Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
32
|
Lobby JL, Danzy S, Holmes KE, Lowen AC, Kohlmeier JE. Both Humoral and Cellular Immunity Limit the Ability of Live Attenuated Influenza Vaccines to Promote T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:107-116. [PMID: 37982700 PMCID: PMC10842048 DOI: 10.4049/jimmunol.2300343] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
One potential advantage of live attenuated influenza vaccines (LAIVs) is their ability to establish both virus-specific Ab and tissue-resident memory T cells (TRM) in the respiratory mucosa. However, it is hypothesized that pre-existing immunity from past infections and/or immunizations prevents LAIV from boosting or generating de novo CD8+ T cell responses. To determine whether we can overcome this limitation, we generated a series of drifted influenza A/PR8 LAIVs with successive mutations in the hemagglutinin protein, allowing for increasing levels of escape from pre-existing Ab. We also inserted a CD8+ T cell epitope from the Sendai virus nucleoprotein (NP) to assess both generation of a de novo T cell response and boosting of pre-existing influenza-specific CD8+ T cells following LAIV immunization. Increasing the level of escape from Ab enabled boosting of pre-existing TRM, but we were unable to generate de novo Sendai virus NP+ CD8+ TRM following LAIV immunization in PR8 influenza-immune mice, even with LAIV strains that can fully escape pre-existing Ab. As these data suggested a role for cell-mediated immunity in limiting LAIV efficacy, we investigated several scenarios to assess the impact of pre-existing LAIV-specific TRM in the upper and lower respiratory tract. Ultimately, we found that deletion of the immunodominant influenza NP366-374 epitope allowed for sufficient escape from cellular immunity to establish de novo CD8+ TRM. When combined, these studies demonstrate that both pre-existing humoral and cellular immunity can limit the effectiveness of LAIV, which is an important consideration for future design of vaccine vectors against respiratory pathogens.
Collapse
Affiliation(s)
- Jenna L. Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Jacob E. Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| |
Collapse
|
33
|
Daradoumis J, Müller MD, Neckermann P, Asbach B, Schrödel S, Thirion C, Wagner R, thor Straten P, Holst PJ, Boilesen D. Preferential Expansion of HPV16 E1-Specific T Cells from Healthy Donors' PBMCs after Ex Vivo Immunization with an E1E2E6E7 Fusion Antigen. Cancers (Basel) 2023; 15:5863. [PMID: 38136407 PMCID: PMC10741473 DOI: 10.3390/cancers15245863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Persistent human papillomavirus (HPV) infection is responsible for practically all cervical and a high proportion of anogenital and oropharyngeal cancers. Therapeutic HPV vaccines in clinical development show great promise in improving outcomes for patients who mount an anti-HPV T-cell response; however, far from all patients elicit a sufficient immunological response. This demonstrates a translational gap between animal models and human patients. Here, we investigated the potential of a new assay consisting of co-culturing vaccine-transduced dendritic cells (DCs) with syngeneic, healthy, human peripheral blood mononuclear cells (PBMCs) to mimic a human in vivo immunization. This new promising human ex vivo PBMC assay was evaluated using an innovative therapeutic adenovirus (Adv)-based HPV vaccine encoding the E1, E2, E6, and E7 HPV16 genes. This new method allowed us to show that vaccine-transduced DCs yielded functional effector T cells and unveiled information on immunohierarchy, showing E1-specific T-cell immunodominance over time. We suggest that this assay can be a valuable translational tool to complement the known animal models, not only for HPV therapeutic vaccines, and supports the use of E1 as an immunotherapeutic target. Nevertheless, the findings reported here need to be validated in a larger number of donors and preferably in patient samples.
Collapse
Affiliation(s)
- Joana Daradoumis
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mikkel Dons Müller
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Patrick Neckermann
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | | | | | - Ralf Wagner
- Institute of Medical Microbiology & Hygiene, Molecular Microbiology (Virology), University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Per thor Straten
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, 2730 Copenhagen, Denmark
| | - Peter Johannes Holst
- InProTher ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark; (M.D.M.); (P.J.H.)
| | - Ditte Boilesen
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Loma Therapeutics ApS, Bioinnovation Institute, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
34
|
Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102027. [PMID: 37808925 PMCID: PMC10556817 DOI: 10.1016/j.omtn.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Adenoviral vectors have been widely used as vaccine candidates or potential vaccine candidates against infectious diseases due to the convenience of genome manipulation, their ability to accommodate large exogenous gene fragments, easy access of obtaining high-titer of virus, and high efficiency of transduction. At the same time, adenoviral vectors have also been used extensively in clinical research for cancer gene therapy and treatment of diseases caused by a single gene defect. However, application of adenovirus also faces a series of challenges such as poor targeting, strong immune response against the vector itself, and they cannot be used repeatedly. It is believed that these problems will be solved gradually with further research and technological development in related fields. Here, we review the construction methods of adenoviral vectors, including "gutless" adenovirus and discuss application of adenoviral vectors as prophylactic vaccines for infectious pathogens and their application prospects as therapeutic vaccines for cancer and other kinds of chronic infectious disease such as human papillomavirus, hepatitis B virus, and hepatitis C virus.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Hongdan Wang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Youcai An
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Ze Chen
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| |
Collapse
|
35
|
Liu J, Jaijyan DK, Chen Y, Feng C, Yang S, Xu Z, Zhan N, Hong C, Li S, Cheng T, Zhu H. Cytomegalovirus-vectored COVID-19 vaccines elicit neutralizing antibodies against the SARS-CoV-2 Omicron variant (BA.2) in mice. Microbiol Spectr 2023; 11:e0246323. [PMID: 37971259 PMCID: PMC10883801 DOI: 10.1128/spectrum.02463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Cytomegalovirus (CMV) has been used as a novel viral vector for vaccine development and gene therapy. Coronavirus disease 2019 is an infectious disease caused by the SARS-CoV-2 virus, which is highly mutable and is still circulating globally. The study showed that the CMV viral vector caused transient systemic infection and induced robust transgene expression in vivo. CMV vectors expressing different SARS-CoV-2 proteins were immunogenic and could elicit neutralizing antibodies against a highly mutated Omicron variant (BA.2). The expression level of receptor-binding domain (RBD) protein was higher than that of full-length S protein using CMV as a vaccine vector, and CMV vector expression RBD protein elicited higher RBD-binding and neutralizing antibodies. Moreover, the study showed that CMV-vectored vaccines would not cause unexpected viral transmission, and pre-existing immunity might impair the immunogenicity of subsequent CMV-vectored vaccines. These works provide meaningful insights for the development of a CMV-based vector vaccine platform and the prevention and control strategies for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School , Newark, New Jersey, USA
| | - Yanling Chen
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Changcan Feng
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Shaomin Yang
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital , Shenzhen, Guangdong, China
| | - Zhenglong Xu
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Nichun Zhan
- School of Biological Sciences and Biotechnology, Minnan Normal University , Zhangzhou, Fujian, China
| | - Congming Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University , Xiamen, Fujian, China
| | - Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University , Xiamen, Fujian, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University , Xiamen, Fujian, China
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School , Newark, New Jersey, USA
| |
Collapse
|
36
|
Chowdhury N, Kundu A. Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases 2023; 11:177. [PMID: 38131983 PMCID: PMC10742622 DOI: 10.3390/diseases11040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact on societies, public health, healthcare systems, and the world economy. With over 771 million people infected worldwide and a staggering death toll exceeding 6,960,783 as of 4 October 2023 (according to the World Health Organization), the urgency for a solution was paramount. Since the outbreak, the demand for immediate treatment for COVID-19 viral infection, as well as for effective vaccination against this virus, was soaring, which led scientists, pharmaceutical/biotech companies, government health agencies, etc., to think about a treatment strategy that could control and minimize this outbreak as soon as possible. Vaccination emerged as the most effective strategy to combat this infectious disease. For vaccination strategies, any conventional vaccine approach using attenuated live or inactivated/engineered virus, as well as other approaches, typically requires years of research and assessment. However, the urgency of the situation promoted a faster and more effective approach to vaccine development against COVID-19. The role of nanotechnology in designing, manufacturing, boosting, and delivering vaccines to the host to counter this virus was unquestionably valued and assessed. Several nanoformulations are discussed here in terms of their composition, physical properties, credibility, and applications in past vaccine development (as well as the possibility of using those used in previous applications for the generation of the COVID-19 vaccine). Controlling and eliminating the spread of the virus and preventing future recurrence requires a safe, tolerable, and effective vaccine strategy. In this review, we discuss the potential of nanoformulations as the basis for an effective vaccine strategy against COVID-19.
Collapse
Affiliation(s)
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
37
|
Francisco AG, Reyes JCB, Tabios IKB, Cruz CJG, Ang MAC, Heralde FM, Lacuna ARG, de Paz-Silava SLM. Seroprevalence of human adenovirus type 5 neutralizing antibodies in the Philippines. PLoS One 2023; 18:e0293046. [PMID: 38039314 PMCID: PMC10691707 DOI: 10.1371/journal.pone.0293046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Human adenovirus (HAdV), particularly the HAdV type 5 (HAdV-5), has been extensively utilized in the development of vector vaccines due to its high immunogenicity, good safety profile, and ease of propagation. However, one of the main challenges in its use is the presence of pre-existing immunity among vaccine recipients. Pre-existing neutralizing antibodies (NAbs) can prevent the uptake of HAdV-5 vectors and reduce vaccine efficacy. Hence, this study investigated the seroprevalence of NAbs against HAdV-5 in urban and rural regions of the Philippines. Luciferase-based neutralization assay was performed on 391 plasma/serum samples. Out of these samples, 346 or 88.5% were positive for HAdV-5 NAbs, and the majority of them (56.8%) had high titers against the virus. Among the regions included in this study, Bicol (Region V) had the highest seroprevalence rate (94.1%). Our findings show that a significant number of adults in the Philippines have pre-existing immunity against HAdV-5. This supports the recommendation that vaccination programs in the country should consider implementing vaccination techniques, such as a prime-boost regimen or addition of booster doses, to address the potential negative effects of pre-existing HAdV-5 immunity in the efficacy of adenoviral vector-based vaccines.
Collapse
Affiliation(s)
- Abialbon G. Francisco
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - John Carlo B. Reyes
- Department of Laboratories, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Ian Kim B. Tabios
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Criselda Jean G. Cruz
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Mark Angelo C. Ang
- Department of Laboratories, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
- Department of Pathology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Francisco M. Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Azita Racquel G. Lacuna
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | | |
Collapse
|
38
|
Xing M, Wang Y, Wang X, Liu J, Dai W, Hu G, He F, Zhao Q, Li Y, Sun L, Wang Y, Du S, Dong Z, Pang C, Hu Z, Zhang X, Xu J, Cai Q, Zhou D. Broad-spectrum vaccine via combined immunization routes triggers potent immunity to SARS-CoV-2 and its variants. J Virol 2023; 97:e0072423. [PMID: 37706688 PMCID: PMC10617383 DOI: 10.1128/jvi.00724-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE The development of broad-spectrum SARS-CoV-2 vaccines will reduce the global economic and public health stress from the COVID-19 pandemic. The use of conserved T-cell epitopes in combination with spike antigen that induce humoral and cellular immune responses simultaneously may be a promising strategy to further enhance the broad spectrum of COVID-19 vaccine candidates. Moreover, this research suggests that the combined vaccination strategies have the ability to induce both effective systemic and mucosal immunity, which may represent promising strategies for maximizing the protective efficacy of respiratory virus vaccines.
Collapse
Affiliation(s)
- Man Xing
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyu Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaowei Hu
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Zhao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuyan Wang
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE&NHC&CAMS Key Laboratory of Medical Molecular, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qiliang Cai
- MOE&NHC&CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongming Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Xu W, Shin SC, Vickman R, Filimon B, Yang Y, Hu Z, Mangold K, Prabhakar B, Schreiber H. The Safety and Efficacy of Systemic Delivery of a New Liver-de-targeted TGFβ Signaling Inhibiting Adenovirus in an Immunocompetent Triple Negative Mouse Mammary Tumor Model. RESEARCH SQUARE 2023:rs.3.rs-3317863. [PMID: 37790556 PMCID: PMC10543255 DOI: 10.21203/rs.3.rs-3317863/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aberrant TGFβ signaling is linked to metastasis and tumor immune escape of many cancers including metastatic triple negative breast cancer (mTNBC). Previously, we have found that oncolytic adenoviruses expressing a TGFβ signaling inhibitory protein (sTGFβRIIFc) induced immune activation in a mouse TNBC (4T1) immunocompetent subcutaneous model with intratumoral injection. Systemic administration of adenoviruses can be a superior route to treat mTNBC but faces the challenges of increased toxicity and viral clearance. Thus, we created a liver-de-targeted sTGFβRIIFc- and LyP-1 peptide-expressing adenovirus (mHAdLyp.sT) with enhanced breast cancer cell tropism. Its safety and immune response features were profiled in the 4T1 model. Our data showed that the systemic administration of mHAdLyp.sT resulted in reduced hepatic and systemic toxicity. mHAdLyp.sT was also effective in increasing Th1 cytokines and anti-tumor cell populations by cytokine analysis, spleen/tumor qRT-PCR, and flow cytometry. We further tested the therapeutic effects of mHAdLyp.sT alone and in combination with immune checkpoint inhibitors (ICIs). mHAdLyp.sT alone and with all ICI combinations elicited significant inhibition of lung metastasis by histological analysis. When mHAdLyp.sT was combined with both anti-PD-1 and anti-CTLA-4 antibodies, primary 4T1 tumor growth was also significantly inhibited. We are confident in advancing this new treatment option for mTNBC.
Collapse
Affiliation(s)
- Weidong Xu
- NorthShore University HealthSystem, an Academic Affiliate of the University of Chicago Pritzker School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sayedahmed EE, Araújo MV, Silva-Pereira TT, Chothe SK, Elkashif A, Alhashimi M, Wang WC, Santos AP, Nair MS, Gontu A, Nissly R, Francisco de Souza Filho A, Tavares MS, Ayupe MC, Salgado CL, Donizetti de Oliveira Candido É, Leal Oliveira DB, Durigon EL, Heinemann MB, Morais da Fonseca D, Jagannath C, Sá Guimarães AM, Kuchipudi SV, Mittal SK. Impact of an autophagy-inducing peptide on immunogenicity and protection efficacy of an adenovirus-vectored SARS-CoV-2 vaccine. Mol Ther Methods Clin Dev 2023; 30:194-207. [PMID: 37502665 PMCID: PMC10299838 DOI: 10.1016/j.omtm.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Because of continual generation of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to design the next generation of vaccines to combat the threat posed by SARS-CoV-2 variants. We developed human adenovirus (HAd) vector-based vaccines (HAd-Spike/C5 and HAd-Spike) that express the whole Spike (S) protein of SARS-CoV-2 with or without autophagy-inducing peptide C5 (AIP-C5), respectively. Mice or golden Syrian hamsters immunized intranasally (i.n.) with HAd-Spike/C5 induced similar levels of S-specific humoral immune responses and significantly higher levels of S-specific cell-mediated immune (CMI) responses compared with HAd-Spike vaccinated groups. These results indicated that inclusion of AIP-C5 induced enhanced S-specific CMI responses and similar levels of virus-neutralizing titers against SARS-CoV-2 variants. To investigate the protection efficacy, golden Syrian hamsters immunized i.n. either with HAd-Spike/C5 or HAd-Spike were challenged with SARS-CoV-2. The lungs and nasal turbinates were collected 3, 5, 7, and 14 days post challenge. Significant reductions in morbidity, virus titers, and lung histopathological scores were observed in immunized groups compared with the mock- or empty vector-inoculated groups. Overall, slightly better protection was seen in the HAd-Spike/C5 group compared with the HAd-Spike group.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Marcelo Valdemir Araújo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Butantan Institute, São Paulo, Brazil
| | - Taiana Tainá Silva-Pereira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shubhada K. Chothe
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Wen-Chien Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Andrea P. Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Meera Surendran Nair
- Department of Veterinary and Biomedical Sciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Abhinay Gontu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ruth Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Mariana Silva Tavares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Caçador Ayupe
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ana Marcia Sá Guimarães
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
41
|
Wang S, Qin M, Xu L, Mu T, Zhao P, Sun B, Wu Y, Song L, Wu H, Wang W, Liu X, Li Y, Yang F, Xu K, He Z, Klein M, Wu K. Aerosol Inhalation of Chimpanzee Adenovirus Vectors (ChAd68) Expressing Ancestral or Omicron BA.1 Stabilized Pre-Fusion Spike Glycoproteins Protects Non-Human Primates against SARS-CoV-2 Infection. Vaccines (Basel) 2023; 11:1427. [PMID: 37766104 PMCID: PMC10535855 DOI: 10.3390/vaccines11091427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Current COVID-19 vaccines are effective countermeasures to control the SARS-CoV-2 virus pandemic by inducing systemic immune responses through intramuscular injection. However, respiratory mucosal immunization will be needed to elicit local sterilizing immunity to prevent virus replication in the nasopharynx, shedding, and transmission. In this study, we first compared the immunoprotective ability of a chimpanzee replication-deficient adenovirus-vectored COVID-19 vaccine expressing a stabilized pre-fusion spike glycoprotein from the ancestral SARS-CoV-2 strain Wuhan-Hu-1 (BV-AdCoV-1) administered through either aerosol inhalation, intranasal spray, or intramuscular injection in cynomolgus monkeys and rhesus macaques. Compared with intranasal administration, aerosol inhalation of BV-AdCoV-1 elicited stronger humoral and mucosal immunity that conferred excellent protection against SARS-CoV-2 infection in rhesus macaques. Importantly, aerosol inhalation induced immunity comparable to that obtained by intramuscular injection, although at a significantly lower dose. Furthermore, to address the problem of immune escape variants, we evaluated the merits of heterologous boosting with an adenovirus-based Omicron BA.1 vaccine (C68-COA04). Boosting rhesus macaques vaccinated with two doses of BV-AdCoV-1 with either the homologous or the heterologous C68-COA04 vector resulted in cross-neutralizing immunity against WT, Delta, and Omicron subvariants, including BA.4/5 stronger than that obtained by administering a bivalent BV-AdCoV-1/C68-COA04 vaccine. These results demonstrate that the administration of BV-AdCoV-1 or C68-COA04 via aerosol inhalation is a promising approach to prevent SARS-CoV-2 infection and transmission and curtail the pandemic spread.
Collapse
Affiliation(s)
- Shen Wang
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.)
| | - Mian Qin
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (M.Q.); (L.X.)
| | - Long Xu
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (M.Q.); (L.X.)
| | - Ting Mu
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (B.S.)
| | - Ping Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Bing Sun
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (B.S.)
| | - Yue Wu
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Lingli Song
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.)
| | - Han Wu
- Quality Control Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Weicheng Wang
- Pilot Production Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Xingwen Liu
- Quality Assurance Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Michel Klein
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Ke Wu
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| |
Collapse
|
42
|
Gross EG, Hamo MA, Estevez-Ordonez D, Laskay NMB, Atchley TJ, Johnston JM, Markert JM. Oncolytic virotherapies for pediatric tumors. Expert Opin Biol Ther 2023; 23:987-1003. [PMID: 37749907 PMCID: PMC11309584 DOI: 10.1080/14712598.2023.2245326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Many pediatric patients with malignant tumors continue to suffer poor outcomes. The current standard of care includes maximum safe surgical resection followed by chemotherapy and radiation which may be associated with considerable long-term morbidity. The emergence of oncolytic virotherapy (OVT) may provide an alternative or adjuvant treatment for pediatric oncology patients. AREAS COVERED We reviewed seven virus types that have been investigated in past or ongoing pediatric tumor clinical trials: adenovirus (AdV-tk, Celyvir, DNX-2401, VCN-01, Ad-TD-nsIL-12), herpes simplex virus (G207, HSV-1716), vaccinia (JX-594), reovirus (pelareorep), poliovirus (PVSRIPO), measles virus (MV-NIS), and Senecavirus A (SVV-001). For each virus, we discuss the mechanism of tumor-specific replication and cytotoxicity as well as key findings of preclinical and clinical studies. EXPERT OPINION Substantial progress has been made in the past 10 years regarding the clinical use of OVT. From our review, OVT has favorable safety profiles compared to chemotherapy and radiation treatment. However, the antitumor effects of OVT remain variable depending on tumor type and viral agent used. Although the widespread adoption of OVT faces many challenges, we are optimistic that OVT will play an important role alongside standard chemotherapy and radiotherapy for the treatment of malignant pediatric solid tumors in the future.
Collapse
Affiliation(s)
- Evan G Gross
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad A Hamo
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Nicholas MB Laskay
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pediatric Neurosurgery, Children’s of Alabama, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
43
|
Bukharova TB, Nedorubova IA, Mokrousova VO, Meglei AY, Basina VP, Nedorubov AA, Vasilyev AV, Grigoriev TE, Zagoskin YD, Chvalun SN, Kutsev SI, Goldshtein DV. Adenovirus-Based Gene Therapy for Bone Regeneration: A Comparative Analysis of In Vivo and Ex Vivo BMP2 Gene Delivery. Cells 2023; 12:1762. [PMID: 37443796 PMCID: PMC10340163 DOI: 10.3390/cells12131762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Adenovirus-mediated gene therapy is a promising tool in bone regenerative medicine. In this work, gene-activated matrices (GAMs) composed of (1) polylactide granules (PLA), which serve as a depot for genetic constructs or matrices for cell attachment, (2) a PRP-based fibrin clot, which is a source of growth factors and a binding gel, and (3) a BMP2 gene providing osteoinductive properties were studied. The study aims to compare the effectiveness of in vivo and ex vivo gene therapy based on adenoviral constructs with the BMP2 gene, PLA particles, and a fibrin clot for bone defect healing. GAMs with Ad-BMP2 and MSC(Ad-BMP2) show osteoinductive properties both in vitro and in vivo. However, MSCs incubated with GAMs containing transduced cells showed a more significant increase in osteopontin gene expression, protein production, Alpl activity, and matrix mineralization. Implantation of the studied matrices into critical-size calvarial defects after 56 days promotes the formation of young bone. The efficiency of neoosteogenesis and the volume fraction of newly formed bone tissue are higher with PLA/PRP-MSC(Ad-BMP2) implantation (33%) than PLA/PRP-Ad-BMP2 (28%). Thus, ex vivo adenoviral gene therapy with the BMP2 gene has proven to be a more effective approach than the in vivo delivery of gene constructs for bone regeneration.
Collapse
Affiliation(s)
- Tatiana Borisovna Bukharova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Irina Alekseevna Nedorubova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Viktoria Olegovna Mokrousova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Anastasiia Yurevna Meglei
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Viktoriia Pavlovna Basina
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Andrey Anatolevich Nedorubov
- Institute of Translational Medicine and Biotechnology and E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
| | - Andrey Vyacheslavovich Vasilyev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
- Institute of Translational Medicine and Biotechnology and E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
| | | | | | | | - Sergey Ivanovich Kutsev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Dmitry Vadimovich Goldshtein
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| |
Collapse
|
44
|
Viscidi RP, Rowley T, Bossis I. Bioengineered Bovine Papillomavirus L1 Protein Virus-like Particle (VLP) Vaccines for Enhanced Induction of CD8 T Cell Responses through Cross-Priming. Int J Mol Sci 2023; 24:9851. [PMID: 37372999 DOI: 10.3390/ijms24129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Safe and effective T cell vaccines are needed for the treatment or prevention of cancers as well as infectious agents where vaccines for neutralizing antibodies have performed poorly. Recent research highlights an important role for tissue-resident memory T cells (TRM cells) in protective immunity and the role of a subset of dendritic cells that are capable of cross-priming for the induction of TRM cells. However, efficient vaccine technologies that operate through cross-priming and induce robust CD8+ T cell responses are lacking. We developed a platform technology by genetically engineering the bovine papillomavirus L1 major capsid protein to insert a polyglutamic acid/cysteine motif in place of wild-type amino acids in the HI loop. Virus-like particles (VLPs) are formed by self-assembly in insect cells infected with a recombinant baculovirus. Polyarginine/cysteine-tagged antigens are linked to the VLP by a reversible disulfide bond. The VLP possesses self-adjuvanting properties due to the immunostimulatory activity of papillomavirus VLPs. Polyionic VLP vaccines induce robust CD8+ T cell responses in peripheral blood and tumor tissues. A prostate cancer polyionic VLP vaccine was more efficacious than other vaccines and immunotherapies for the treatment of prostate cancer in a physiologically relevant murine model and successfully treated more advanced diseases than the less efficacious technologies. The immunogenicity of polyionic VLP vaccines is dependent on particle size, reversible linkage of the antigen to the VLP, and an interferon type 1 and Toll-like receptor (TLR)3/7-dependent mechanism.
Collapse
Affiliation(s)
- Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Treva Rowley
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Ioannis Bossis
- Department of Animal Production, School of Agricultural Sciences, Forestry & Natural Resources, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
45
|
Díez-Domingo J, Sáez-Llorens X, Rodriguez-Weber MA, Epalza C, Chatterjee A, Chiu CH, Lin CY, Berry AA, Martinón-Torres F, Baquero-Artigao F, Langley JM, Ramos Amador JT, Domachowske JB, Huang LM, Chiu NC, Esposito S, Moris P, Lien-Anh Nguyen T, Nikic V, Woo W, Zhou Y, Dieussaert I, Leach A, Gonzalez Lopez A, Vanhoutte N. Safety and Immunogenicity of a ChAd155-Vectored Respiratory Syncytial Virus (RSV) Vaccine in Healthy RSV-Seropositive Children 12-23 Months of Age. J Infect Dis 2023; 227:1293-1302. [PMID: 36484484 PMCID: PMC10226655 DOI: 10.1093/infdis/jiac481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Safe and effective respiratory syncytial virus (RSV) vaccines remain elusive. This was a phase I/II trial (NCT02927873) of ChAd155-RSV, an investigational chimpanzee adenovirus-RSV vaccine expressing 3 proteins (fusion, nucleoprotein, and M2-1), administered to 12-23-month-old RSV-seropositive children followed up for 2 years after vaccination. METHODS Children were randomized to receive 2 doses of ChAd155-RSV or placebo (at a 1:1 ratio) (days 1 and 31). Doses escalated from 0.5 × 1010 (low dose [LD]) to 1.5 × 1010 (medium dose [MD]) to 5 × 1010 (high dose [HD]) viral particles after safety assessment. Study end points included anti-RSV-A neutralizing antibody (Nab) titers through year 1 and safety through year 2. RESULTS Eighty-two participants were vaccinated, including 11, 14, and 18 in the RSV-LD, RSV-MD, and RSV-HD groups, respectively, and 39 in the placebo groups. Solicited adverse events were similar across groups, except for fever (more frequent with RSV-HD). Most fevers were mild (≤38.5°C). No vaccine-related serious adverse events or RSV-related hospitalizations were reported. There was a dose-dependent increase in RSV-A Nab titers in all groups after dose 1, without further increase after dose 2. RSV-A Nab titers remained higher than prevaccination levels at year 1. CONCLUSIONS Three ChAd155-RSV dosages were found to be well tolerated. A dose-dependent immune response was observed after dose 1, with no observed booster effect after dose 2. Further investigation of ChAd155-RSV in RSV-seronegative children is warranted. CLINICAL TRIALS REGISTRATION NCT02927873.
Collapse
Affiliation(s)
| | - Xavier Sáez-Llorens
- Department of Infectious Diseases, Hospital del Niño Dr José Renán Esquivel and Cevaxin Clinical Research Center, Panama City, Panama
- National Investigation System, Senacyt, Panama City, Panama
| | | | - Cristina Epalza
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research and Clinical Trials Unit, Madrid, Spain
- Pediatric Research and Clinical Trials Unit (UPIC), Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain
- RITIP (Traslational Research Network in Pediatric Infectious Diseases), Fundación para la Investigación Biomédica del Hospital 12 de Octubre, Madrid, Spain
| | - Archana Chatterjee
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University Taoyuan, Taoyuan, Taiwan
| | - Chien-Yu Lin
- Department of Pediatrics, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan
| | - Andrea A Berry
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group, Spain, Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Baquero-Artigao
- Hospital Universitario Infantil La Paz, Department of Infectious Diseases and Tropical Pediatrics, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Joanne M Langley
- Canadian Center for Vaccinology, Iwk Health Centre and Nova Scotia Health Authority, Dalhousie University, Halifax, Canada
| | - José T Ramos Amador
- Departamento De Salud Pública Y Materno-infantil, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Joseph B Domachowske
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Nan-Chang Chiu
- Department of Pediatrics, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Susanna Esposito
- Pietro Barilla Children's Hospital, University of Parma, Pediatric Clinic, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rando HM, Lordan R, Kolla L, Sell E, Lee AJ, Wellhausen N, Naik A, Kamil JP, Gitter A, Greene CS. The Coming of Age of Nucleic Acid Vaccines during COVID-19. mSystems 2023; 8:e0092822. [PMID: 36861992 PMCID: PMC10134841 DOI: 10.1128/msystems.00928-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
In the 21st century, several emergent viruses have posed a global threat. Each pathogen has emphasized the value of rapid and scalable vaccine development programs. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made the importance of such efforts especially clear. New biotechnological advances in vaccinology allow for recent advances that provide only the nucleic acid building blocks of an antigen, eliminating many safety concerns. During the COVID-19 pandemic, these DNA and RNA vaccines have facilitated the development and deployment of vaccines at an unprecedented pace. This success was attributable at least in part to broader shifts in scientific research relative to prior epidemics: the genome of SARS-CoV-2 was available as early as January 2020, facilitating global efforts in the development of DNA and RNA vaccines within 2 weeks of the international community becoming aware of the new viral threat. Additionally, these technologies that were previously only theoretical are not only safe but also highly efficacious. Although historically a slow process, the rapid development of vaccines during the COVID-19 crisis reveals a major shift in vaccine technologies. Here, we provide historical context for the emergence of these paradigm-shifting vaccines. We describe several DNA and RNA vaccines in terms of their efficacy, safety, and approval status. We also discuss patterns in worldwide distribution. The advances made since early 2020 provide an exceptional illustration of how rapidly vaccine development technology has advanced in the last 2 decades in particular and suggest a new era in vaccines against emerging pathogens. IMPORTANCE The SARS-CoV-2 pandemic has caused untold damage globally, presenting unusual demands on but also unique opportunities for vaccine development. The development, production, and distribution of vaccines are imperative to saving lives, preventing severe illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Although vaccine technologies that provide the DNA or RNA sequence of an antigen had never previously been approved for use in humans, they have played a major role in the management of SARS-CoV-2. In this review, we discuss the history of these vaccines and how they have been applied to SARS-CoV-2. Additionally, given that the evolution of new SARS-CoV-2 variants continues to present a significant challenge in 2022, these vaccines remain an important and evolving tool in the biomedical response to the pandemic.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Ronan Lordan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Likhitha Kolla
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amruta Naik
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - COVID-19 Review Consortium
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Rzymski P. Guillain-Barré syndrome and COVID-19 vaccines: focus on adenoviral vectors. Front Immunol 2023; 14:1183258. [PMID: 37180147 PMCID: PMC10169623 DOI: 10.3389/fimmu.2023.1183258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
COVID-19 vaccination is a life-saving intervention. However, it does not come up without a risk of rare adverse events, which frequency varies between vaccines developed using different technological platforms. The increased risk of Guillain-Barré syndrome (GBS) has been reported for selected adenoviral vector vaccines but not for other vaccine types, including more widely used mRNA preparations. Therefore, it is unlikely that GBS results from the cross-reactivity of antibodies against the SARS-CoV-2 spike protein generated after the COVID-19 vaccination. This paper outlines two hypotheses according to which increased risk of GBS following adenoviral vaccination is due to (1) generation of anti-vector antibodies that may cross-react with proteins involved in biological processes related to myelin and axons, or (2) neuroinvasion of selected adenovirus vectors to the peripheral nervous system, infection of neurons and subsequent inflammation and neuropathies. The rationale behind these hypotheses is outlined, advocating further epidemiological and experimental research to verify them. This is particularly important given the ongoing interest in using adenoviruses in developing vaccines against various infectious diseases and cancer immunotherapeutics.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
48
|
Daradoumis J, Ragonnaud E, Skandorff I, Nielsen KN, Bermejo AV, Andersson AM, Schroedel S, Thirion C, Neukirch L, Holst PJ. An Endogenous Retrovirus Vaccine Encoding an Envelope with a Mutated Immunosuppressive Domain in Combination with Anti-PD1 Treatment Eradicates Established Tumours in Mice. Viruses 2023; 15:v15040926. [PMID: 37112906 PMCID: PMC10141008 DOI: 10.3390/v15040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.
Collapse
Affiliation(s)
- Joana Daradoumis
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isabella Skandorff
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | - Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne-Marie Andersson
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | | | - Lasse Neukirch
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
49
|
Veith T, Bleicker T, Eschbach-Bludau M, Brünink S, Mühlemann B, Schneider J, Beheim-Schwarzbach J, Rakotondranary SJ, Ratovonamana YR, Tsagnangara C, Ernest R, Randriantafika F, Sommer S, Stetter N, Jones TC, Drosten C, Ganzhorn JU, Corman VM. Non-structural genes of novel lemur adenoviruses reveal codivergence of virus and host. Virus Evol 2023; 9:vead024. [PMID: 37091898 PMCID: PMC10121206 DOI: 10.1093/ve/vead024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Adenoviruses (AdVs) are important human and animal pathogens and are frequently used as vectors for gene therapy and vaccine delivery. Surprisingly, there are only scant data regarding primate AdV origin and evolution, especially in the most basal primate hosts. We detect and sequence AdVs from faeces of two Madagascan lemur species. Complete genome sequence analyses define a new AdV species with a particularly large gene encoding a protein of unknown function in the early gene region 3. Unexpectedly, the new AdV species is not most similar to human or other simian AdVs but to bat adenovirus C. Genome characterisation shows signals of virus-host codivergence in non-structural genes, which show lower diversity than structural genes. Outside a lemur species mixing zone, recombination less frequently separates structural genes, as in human adenovirus C. The evolutionary history of lemur AdVs likely involves both a host switch and codivergence with the lemur hosts.
Collapse
Affiliation(s)
- Talitha Veith
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Monika Eschbach-Bludau
- Institute of Virology, University Hospital, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Sebastian Brünink
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - Barbara Mühlemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Julia Schneider
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
| | - S Jacques Rakotondranary
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Département Biologie Animale, Faculté des Sciences, Université d’ Antananarivo, P.O. Box 906, Antananarivo 101, Madagascar
| | - Yedidya R Ratovonamana
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Département Biologie Animale, Faculté des Sciences, Université d’ Antananarivo, P.O. Box 906, Antananarivo 101, Madagascar
| | - Cedric Tsagnangara
- Tropical Biodiversity and Social Enterprise SARL, Immeuble CNAPS, premier étage, Fort Dauphin 614, Madagascar
| | - Refaly Ernest
- Tropical Biodiversity and Social Enterprise SARL, Immeuble CNAPS, premier étage, Fort Dauphin 614, Madagascar
| | | | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, Ulm 89069, Germany
| | - Nadine Stetter
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, Hamburg 20359, Germany
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Jörg U Ganzhorn
- Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King Platz 3, Hamburg 20146, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin 10117, Germany
- German Centre for Infection Research (DZIF), Partner Site Berlin, Charitéplatz 1, Berlin 10117, Germany
- Labor Berlin, Charité—Vivantes GmbH, Sylter Straße 2, Berlin 13353, Germany
| |
Collapse
|
50
|
Saunders JE, Gilbride C, Dowall S, Morris S, Ulaszewska M, Spencer AJ, Rayner E, Graham VA, Kennedy E, Thomas K, Hewson R, Gilbert SC, Belij-Rammerstorfer S, Lambe T. Adenoviral vectored vaccination protects against Crimean-Congo Haemorrhagic Fever disease in a lethal challenge model. EBioMedicine 2023; 90:104523. [PMID: 36933409 PMCID: PMC10025009 DOI: 10.1016/j.ebiom.2023.104523] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The tick-borne bunyavirus, Crimean-Congo Haemorrhagic Fever virus (CCHFV), can cause severe febrile illness in humans and has a wide geographic range that continues to expand due to tick migration. Currently, there are no licensed vaccines against CCHFV for widespread usage. METHODS In this study, we describe the preclinical assessment of a chimpanzee adenoviral vectored vaccine (ChAdOx2 CCHF) which encodes the glycoprotein precursor (GPC) from CCHFV. FINDINGS We demonstrate here that vaccination with ChAdOx2 CCHF induces both a humoral and cellular immune response in mice and 100% protection in a lethal CCHF challenge model. Delivery of the adenoviral vaccine in a heterologous vaccine regimen with a Modified Vaccinia Ankara vaccine (MVA CCHF) induces the highest levels of CCHFV-specific cell-mediated and antibody responses in mice. Histopathological examination and viral load analysis of the tissues of ChAdOx2 CCHF immunised mice reveals an absence of both microscopic changes and viral antigen associated with CCHF infection, further demonstrating protection against disease. INTERPRETATION There is the continued need for an effective vaccine against CCHFV to protect humans from lethal haemorrhagic disease. Our findings support further development of the ChAd platform expressing the CCHFV GPC to seek an effective vaccine against CCHFV. FUNDING This research was supported by funding from the Biotechnology and Biological Sciences Research Council (UKRI-BBSRC) [BB/R019991/1 and BB/T008784/1].
Collapse
Affiliation(s)
- Jack E Saunders
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Ciaran Gilbride
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Susan Morris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra J Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Victoria A Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Kelly Thomas
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, UK
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sandra Belij-Rammerstorfer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|