1
|
Jin S, Zhang M, Qiao X. Cyclophilin A: promising target in cancer therapy. Cancer Biol Ther 2024; 25:2425127. [PMID: 39513594 PMCID: PMC11552246 DOI: 10.1080/15384047.2024.2425127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
Collapse
Affiliation(s)
- Shujuan Jin
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| | - Mengjiao Zhang
- Chenxi Women’s and Children’s Hospital, Huaihua, Hunan, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Lai W, Zhao S, Lai Q, Zhou W, Wu M, Jiang X, Wang X, Peng Y, Wei X, Ouyang L, Gou L, Chen H, Wang Y, Yang J. Design, Synthesis, and Bioevaluation of a Novel Hybrid Molecular Pyrrolobenzodiazepine-Anthracenecarboxyimide as a Payload for Antibody-Drug Conjugate. J Med Chem 2022; 65:11679-11702. [PMID: 35982539 DOI: 10.1021/acs.jmedchem.2c00471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of hybrid molecules combining pyrrolobenzodiazepine (PBD) and anthracenecarboxyimide pharmacophores were designed, synthesized, and tested for in vitro cytotoxicity against various cancer cell lines. The most potent compound from this series, 37b3, exhibited a subnanomolar level of cytotoxicity with an IC50 of 0.17-0.94 nM. 37b3 induced DNA damage and led to tumor cell cycle arrest and apoptosis. We employed 37b3 as a payload to conjugate with trastuzumab to obtain the antibody-drug conjugate (ADC) T-PBA. T-PBA maintained its mode of target and internalization ability of trastuzumab. We demonstrated that T-PBA could be degraded through the lysosomal pathway to release the payload 37b3 after internalization. T-PBA showed a powerful killing effect on Her2-positive cancer cells in vitro. Furthermore, T-PBA significantly inhibited tumor growth in gastric and ovarian cancer xenograft mouse models without overt toxicity. Collectively, these studies suggest that T-PBA represents a promising new ADC that deserves further investigation.
Collapse
Affiliation(s)
- Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Shengyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Wei Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xin Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xian Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
3
|
Liu C, Zhang H, Li Y, Zhang Z, Shi R, Xu S, Zhu G, Wang P, Liu H, Chen J. [Apatinib Combined with CCI-779 Inhibits the Proliferation and Migration of Small Cell Lung Cancer NCI-H446 Cells In Vitro]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:216-222. [PMID: 32209188 PMCID: PMC7210093 DOI: 10.3779/j.issn.1009-3419.2020.104.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
背景与目的 肺癌是世界上最常见的恶性肿瘤,其中小细胞肺癌是恶性程度最高的亚型,具有生长迅速、早期转移和高度血管化等特点。阿帕替尼(Apatinib)是我国自主研发的血管内皮生长因子受体2抑制剂,在多种实体瘤中疗效显著。本研究旨在探讨Apatinib对小细胞肺癌细胞株NCI-H446的体外作用以及联合哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)抑制剂CCI-779对小细胞肺癌的体外作用。 方法 体外培养小细胞肺癌细胞株NCI-H446,CCK8法、细胞凋亡实验、细胞周期实验及Transwell实验检测Apatinib及联合mTOR抑制剂CCI-779对NCI-H446细胞增殖、凋亡、周期及迁移的影响;Western blot实验检测血管内皮生长因子受体和细胞周期相关蛋白的表达。 结果 CCK8实验结果显示高浓度Apatinib能抑制NCI-H446细胞增殖;细胞凋亡实验结果显示高浓度Apatinib诱导NCI-H446细胞凋亡;Transwell实验结果显示高浓度Apatinib抑制NCI-H446细胞迁移;联合mTOR抑制剂CCI-779后,低浓度Apatinib便能抑制NCI-H446细胞增殖和迁移,诱导细胞凋亡。 结论 Apatinib对小细胞肺癌细胞株NCI-H446的作用具有浓度依赖性特征,高浓度Apatinib能够抑制NCI-H446细胞增殖和迁移,诱导细胞凋亡,与mTOR抑制剂CCI-779联用能增加NCI-H446细胞对Apatinib的敏感性。
Collapse
Affiliation(s)
- Chao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zihe Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Songlin Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Pan Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol 2018; 834:188-196. [DOI: 10.1016/j.ejphar.2018.07.034] [Citation(s) in RCA: 677] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
|
5
|
Abdollahpour-Alitappeh M, Hashemi Karouei SM, Lotfinia M, Amanzadeh A, Habibi-Anbouhi M. A developed antibody-drug conjugate rituximab-vcMMAE shows a potent cytotoxic activity against CD20-positive cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [PMID: 29523024 DOI: 10.1080/21691401.2018.1449119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Rituximab is a chimeric monoclonal antibody directed against B-lymphocyte specific antigen CD20, which is used for the treatment of B-cell malignancies. However, the effectiveness of rituximab is limited partly due to treatment resistance. The aim of this study was to develop rituximab-based antibody drug conjugate (ADC) to enhance rituximab activity. In this study, monomethyl auristatin E (MMAE) was covalently conjugated to dithiothreitol -reduced rituximab via a valine-citrulline peptide linker (rituximab-vcMMAE). The conjugates were then characterized by using nonreducing sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) and cell-based enzyme-linked immunosorbent assay (ELISA). The cytotoxic activity of the ADC was evaluated against Raji (human B-cell lymphoma; CD20-positive) and MOLT-4 (T lymphoblast; acute lymphoblastic leukemia; CD20-negative) cell lines. In addition, the colony formation assay was used to identify the propagation ability of ADC-treated cells in vitro. Results from nonreducing SDS-PAGE revealed various species of rituximab-MC-Val-Cit-PABC-MMAE (rituximab-vcMMAE), as compared with unconjugated rituximab. The binding capacity of rituximab-vcMMAE to the CD20-positive cell was similar to that of the parental rituximab. Most importantly, our results revealed that rituximab-vcMMAE was highly potent against the CD20-positive cell line, but not against the CD20-negative cell. At the same time, rituximab-vcMMAE was able to inhibit colony formation in CD20-positive cells. These data indicate that rituximab-vcMMAE may be a highly effective and selective therapy for the treatment of B-cell lymphoma.
Collapse
Affiliation(s)
- Meghdad Abdollahpour-Alitappeh
- a Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b National Cell Bank of Iran , Pasteur Institute of Iran , Tehran , Iran
| | | | - Majid Lotfinia
- d Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Amir Amanzadeh
- b National Cell Bank of Iran , Pasteur Institute of Iran , Tehran , Iran
| | | |
Collapse
|
6
|
Challenges in Optimising the Successful Construction of Antibody Drug Conjugates in Cancer Therapy. Antibodies (Basel) 2018; 7:antib7010011. [PMID: 31544863 PMCID: PMC6698866 DOI: 10.3390/antib7010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Although considerable progress has been made in the field of cancer chemotherapy, there remains a significant unmet medical need, with a requirement to move away from traditional cytotoxics and explore novel, smarter chemotherapeutic approaches. One such example of the smart chemotherapy approach is antibody-drug conjugates (ADCs), which consist of an antibody that binds selectively to a cancer antigen linked to a cytotoxic agent. When developing an ADC, it may be necessary to produce a variety of constructs to fully assess the optimal configuration for the molecule. By testing ADCs prepared using a range of cytotoxic agents, linkers, or different antibodies, it is possible to fully assess the optimal approach for this treatment modality before advancing to the clinic. Since the development and approval of first-generation ADCs, significant improvements in development technology have occurred. Here, we consider the advances made within the field of ADCs, focusing on the development of EDO-B278 and EDO-B776, both of which have demonstrated efficacy in preclinical testing. Although some limitations remain in this field of development, the potential reduction in toxicity offered by ADCs justifies the investment in research to find workable solutions that could ultimately provide patients with superior outcomes.
Collapse
|
7
|
Botzanowski T, Erb S, Hernandez-Alba O, Ehkirch A, Colas O, Wagner-Rousset E, Rabuka D, Beck A, Drake PM, Cianférani S. Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates. MAbs 2017; 9:801-811. [PMID: 28406343 DOI: 10.1080/19420862.2017.1316914] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a family of compounds with promise as efficient immunotherapies. First-generation ADCs were generated mostly via reactions on either lysine side-chain amines or cysteine thiol groups after reduction of the interchain disulfide bonds, resulting in heterogeneous populations with a variable number of drug loads per antibody. To control the position and the number of drug loads, new conjugation strategies aiming at the generation of more homogeneous site-specific conjugates have been developed. We report here the first multi-level characterization of a site-specific ADC by state-of-the-art mass spectrometry (MS) methods, including native MS and its hyphenation to ion mobility (IM-MS). We demonstrate the versatility of native MS methodologies for site-specific ADC analysis, with the unique ability to provide several critical quality attributes within one single run, along with a direct snapshot of ADC homogeneity/heterogeneity without extensive data interpretation. The capabilities of native IM-MS to directly access site-specific ADC conformational information are also highlighted. Finally, the potential of these techniques for assessing an ADC's heterogeneity/homogeneity is illustrated by comparing the analytical characterization of a site-specific DAR4 ADC to that of first-generation ADCs. Altogether, our results highlight the compatibility, versatility, and benefits of native MS approaches for the analytical characterization of all types of ADCs, including site-specific conjugates. Thus, we envision integrating native MS and IM-MS approaches, even in their latest state-of-the-art forms, into workflows that benchmark bioconjugation strategies.
Collapse
Affiliation(s)
- Thomas Botzanowski
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS , Strasbourg , France
| | - Stéphane Erb
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS , Strasbourg , France
| | - Oscar Hernandez-Alba
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS , Strasbourg , France
| | - Anthony Ehkirch
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS , Strasbourg , France
| | - Olivier Colas
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Elsa Wagner-Rousset
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - David Rabuka
- c Catalent Biologics West , Emeryville , CA , USA
| | - Alain Beck
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | | | - Sarah Cianférani
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS , Strasbourg , France
| |
Collapse
|
8
|
Junttila MR, Mao W, Wang X, Wang BE, Pham T, Flygare J, Yu SF, Yee S, Goldenberg D, Fields C, Eastham-Anderson J, Singh M, Vij R, Hongo JA, Firestein R, Schutten M, Flagella K, Polakis P, Polson AG. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med 2016; 7:314ra186. [PMID: 26582901 DOI: 10.1126/scitranslmed.aac7433] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are hypothesized to actively maintain tumors similarly to how their normal counterparts replenish differentiated cell types within tissues, making them an attractive therapeutic target for the treatment of cancer. Because most CSC markers also label normal tissue stem cells, it is unclear how to selectively target them without compromising normal tissue homeostasis. We evaluated a strategy that targets the cell surface leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a well-characterized tissue stem cell and CSC marker, with an antibody conjugated to distinct cytotoxic drugs. One antibody-drug conjugate (ADC) demonstrated potent tumor efficacy and safety in vivo. Furthermore, the ADC decreased tumor size and proliferation, translating to improved survival in a genetically engineered model of intestinal tumorigenesis. These data demonstrate that ADCs can be leveraged to exploit differences between normal and cancer stem cells to successfully target gastrointestinal cancers.
Collapse
Affiliation(s)
- Melissa R Junttila
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Weiguang Mao
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xi Wang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bu-Er Wang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thinh Pham
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Flygare
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shang-Fan Yu
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sharon Yee
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David Goldenberg
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Carter Fields
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Mallika Singh
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rajesh Vij
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jo-Anne Hongo
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ron Firestein
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melissa Schutten
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Flagella
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul Polakis
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Andrew G Polson
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
9
|
Development of molecularly targeted agents and immunotherapies in small cell lung cancer. Eur J Cancer 2016; 60:26-39. [DOI: 10.1016/j.ejca.2016.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
10
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
11
|
Eaton JS, Miller PE, Mannis MJ, Murphy CJ. Ocular Adverse Events Associated with Antibody-Drug Conjugates in Human Clinical Trials. J Ocul Pharmacol Ther 2015; 31:589-604. [PMID: 26539624 DOI: 10.1089/jop.2015.0064] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This article reviews ocular adverse events (AEs) reported in association with administration of antibody-drug conjugates (ADCs) in human clinical trials. References reporting ocular toxicity or AEs associated with ADCs were collected using online publication searches. Articles, abstracts, or citations were included if they cited ocular toxicities or vision-impairing AEs with a confirmed or suspected association with ADC administration. Twenty-two references were found citing ocular or vision-impairing AEs in association with ADC administration. All references reported use of ADCs in human clinical trials for treatment of various malignancies. The molecular target and cytotoxic agent varied depending on the ADC used. Ocular AEs affected a diversity of ocular tissues. The most commonly reported AEs involved the ocular surface and included blurred vision, dry eye, and corneal abnormalities (including microcystic corneal disease). Most ocular AEs were not severe (≤ grade 2) or dose limiting. Clinical outcomes were not consistently reported, but when specified, most AEs improved or resolved with cessation of treatment or with ameliorative therapy. A diverse range of ocular AEs are reported in association with administration of ADCs for the treatment of cancer. The toxicologic mechanism(s) and pathogenesis of such events are not well understood, but most are mild in severity and reversible. Drug development and medical professionals should be aware of the clinical features of these events to facilitate early recognition and intervention in the assessment of preclinical development programs and in human clinical trials.
Collapse
Affiliation(s)
| | - Paul E Miller
- 1 Ocular Services On Demand (OSOD), LLC , Madison, Wisconsin.,2 Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison , Madison, Wisconsin
| | - Mark J Mannis
- 3 Department of Ophthalmology and Vision Sciences, School of Medicine, University of California , Davis, Sacramento, California
| | - Christopher J Murphy
- 1 Ocular Services On Demand (OSOD), LLC , Madison, Wisconsin.,3 Department of Ophthalmology and Vision Sciences, School of Medicine, University of California , Davis, Sacramento, California.,4 Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California , Davis, Davis, California
| |
Collapse
|
12
|
Vergote I, Leamon CP. Vintafolide: a novel targeted therapy for the treatment of folate receptor expressing tumors. Ther Adv Med Oncol 2015; 7:206-18. [PMID: 26136852 DOI: 10.1177/1758834015584763] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite advances in the development of molecularly targeted therapies, limited improvements in overall survival have been noted among many cancer patients with solid tumors, primarily due to development of drug resistance. Accordingly, there is an unmet need for new targeted therapies and treatment approaches for cancer, especially for overcoming resistance. Expression of the folate receptor is upregulated in many tumor types and thus represents an ideal target for cancer treatment. Several folate receptor targeted therapies are in development, including the small molecule drug conjugate vintafolide, the monoclonal antibody farletuzumab, and the antibody-drug conjugate IMGN853. The role of the folate receptor as a target in cancer progression and resistance as well as emerging preclinical and clinical data from studies on those folate receptor targeted agents that are in development with a focus on vintafolide are reviewed. The folate receptor has several unique properties, such as high expression in several tumor types, that make it a rational target for cancer treatment, and allow for selective delivery of folate receptor targeted agents. Early-stage clinical data in lung and ovarian cancer suggest that vintafolide has the potential for combination with other standard approved agents.
Collapse
|
13
|
Bioanalytical approaches for characterizing catabolism of antibody–drug conjugates. Bioanalysis 2015; 7:1583-604. [DOI: 10.4155/bio.15.87] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The in vivo stability and catabolism of antibody–drug conjugates (ADCs) directly impact their PK, efficacy and safety, and metabolites of the cytotoxic or small molecule drug component of an ADC can further complicate these factors. This perspective highlights the importance of understanding ADC catabolism and the associated bioanalytical challenges. We evaluated different bioanalytical approaches to qualitatively and quantitatively characterize ADC catabolites. Here we review and discuss the rationale and experimental strategies used to design bioanalytical assays for characterization of ADC catabolism and supporting ADME studies during ADC clinical development. This review covers both large and small molecule approaches, and uses examples from Kadcyla® (T-DM1) and a THIOMAB™ antibody–drug conjugate to illustrate the process.
Collapse
|
14
|
Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 2015; 35:e00225. [PMID: 26182432 PMCID: PMC4613712 DOI: 10.1042/bsr20150089] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022] Open
Abstract
Over the past couple of decades, antibody-drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Christina Peters
- School of Life Sciences, Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K
| | - Stuart Brown
- School of Life Sciences, Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K.
| |
Collapse
|
15
|
Suzuki T, Miyazaki C, Ishii-Watabe A, Tada M, Sakai-Kato K, Kawanishi T, Kawasaki N. A fluorescent imaging method for analyzing the biodistribution of therapeutic monoclonal antibodies that can distinguish intact antibodies from their breakdown products. MAbs 2015; 7:759-69. [PMID: 25891896 DOI: 10.1080/19420862.2015.1038683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many monoclonal antibodies have been developed for therapy over the last 2 decades. In the development of therapeutic antibodies, the preclinical assessment of an antibody's biodistribution is important for the prediction of the antibody's efficacy and safety. For imaging analyses of such biodistributions, radioisotope (RI) labeling and fluorescence labeling methods are typically used, but the resulting data are limited because these methods cannot distinguish breakdown products from intact antibodies. To resolve this problem, we developed a novel method using fluorescent resonance energy transfer (FRET)-type labeling and a spectral unmixing tool. With FRET-type labeling (labeling with 2 species of fluorophore), different fluorescence properties of labeled intact antibodies and their breakdown products (the hydrolyzed/digested type of breakdown products) are made visible. With the spectral unmixing tool, the fluorescence of a solution containing the intact antibody and its breakdown products could be unmixed in proportion to their contents. Moreover, when labeled antibodies that targeted either human epidermal growth factor receptor-2 or epidermal growth factor receptor were injected into nude mice implanted subcutaneously with tumor cells, the accumulation of the injected labeled antibodies and their breakdown products in the tumor could be separately analyzed by both whole-mouse imaging and a tumor homogenate analysis. These results suggest that our method using FRET-type labeling and a spectral unmixing tool could be useful in distinguishing breakdown products from intact antibodies.
Collapse
Affiliation(s)
- Takuo Suzuki
- a National Institute of Health Sciences ; Tokyo , Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
O'Connell BC, O'Callaghan K, Tillotson B, Douglas M, Hafeez N, West KA, Stern H, Ali JA, Changelian P, Fritz CC, Palombella VJ, McGovern K, Kutok JL. HSP90 inhibition enhances antimitotic drug-induced mitotic arrest and cell death in preclinical models of non-small cell lung cancer. PLoS One 2014; 9:e115228. [PMID: 25542032 PMCID: PMC4277299 DOI: 10.1371/journal.pone.0115228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022] Open
Abstract
HSP90 inhibitors are currently undergoing clinical evaluation in combination with antimitotic drugs in non-small cell lung cancer (NSCLC), but little is known about the cellular effects of this novel drug combination. Therefore, we investigated the molecular mechanism of action of IPI-504 (retaspimycin HCl), a potent and selective inhibitor of HSP90, in combination with the microtubule targeting agent (MTA) docetaxel, in preclinical models of NSCLC. We identified a subset of NSCLC cell lines in which these drugs act in synergy to enhance cell death. Xenograft models of NSCLC demonstrated tumor growth inhibition, and in some cases, regression in response to combination treatment. Treatment with IPI-504 enhanced the antimitotic effects of docetaxel leading to the hypothesis that the mitotic checkpoint is required for the response to drug combination. Supporting this hypothesis, overriding the checkpoint with an Aurora kinase inhibitor diminished the cell death synergy of IPI-504 and docetaxel. To investigate the molecular basis of synergy, an unbiased stable isotope labeling by amino acids in cell culture (SILAC) proteomic approach was employed. Several mitotic regulators, including components of the ubiquitin ligase, anaphase promoting complex (APC/C), were specifically down-regulated in response to combination treatment. Loss of APC/C by RNAi sensitized cells to docetaxel and enhanced its antimitotic effects. Treatment with a PLK1 inhibitor (BI2536) also sensitized cells to IPI-504, indicating that combination effects may be broadly applicable to other classes of mitotic inhibitors. Our data provide a preclinical rationale for testing the combination of IPI-504 and docetaxel in NSCLC.
Collapse
Affiliation(s)
- Brenda C. O'Connell
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
- * E-mail:
| | - Katie O'Callaghan
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Bonnie Tillotson
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Mark Douglas
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Nafeeza Hafeez
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Kip A. West
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Howard Stern
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Janid A. Ali
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Paul Changelian
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | | | | | - Karen McGovern
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| | - Jeffery L. Kutok
- Infinity Pharmaceuticals, Inc., Cambridge, MA, United States of America
| |
Collapse
|
17
|
Klinguer-Hamour C, Strop P, Shah DK, Ducry L, Xu A, Beck A. World Antibody-Drug Conjugate Summit, October 15-16, 2013, San Francisco, CA. MAbs 2014; 6:18-29. [PMID: 24423618 PMCID: PMC3929441 DOI: 10.4161/mabs.27437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The World Antibody-Drug Conjugate (WADC) Summits organized by Hanson Wade are currently the largest meetings fully dedicated to ADCs. The first global ADC Summit was organized in Boston in October 2010. Since 2011, two WADC are held every year in Frankfurt and San Francisco, respectively. The 2013 WADC San Francisco event was structured around plenary sessions with keynote speakers from AbbVie, Agensys, ImmunoGen, Immunomedics, Genentech, Pfizer and Seattle Genetics. Parallel tracks were also organized addressing ADC discovery, development and optimization of chemistry, manufacturing and control (CMC) issues. Discovery and process scientists, regulatory experts (US Food and Drug Administration), academics and clinicians were present, including representatives from biotechnology firms (Concortis, CytomX Therapeutics, Glykos, Evonik, Igenica, Innate Pharma, Mersana Therapeutics, Polytherics, Quanta Biodesign, Redwood Bioscience, Sutro Biopharma, SynAffix), pharmaceutical companies (Amgen, Genmab, Johnson and Johnson, MedImmune, Novartis, Progenics, Takeda) and contract research or manufacturing organizations (Baxter, Bayer, BSP Pharmaceuticals, Fujifilm/Diosynth, Lonza, Pierre Fabre Contract Manufacturing, Piramal, SAFC, SafeBridge).
Collapse
Affiliation(s)
| | | | - Dhaval K Shah
- Department of Pharmaceutical Sciences; The State University of New York at Buffalo; Buffalo, NY USA
| | | | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre; Saint Julien en Genevois, France
| |
Collapse
|
18
|
Abstract
Antibody-drug conjugates (ADCs) are becoming an increasingly important sub-class of antibody-related therapeutics. Two ADCs, brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla), were recently approved for marketing both by the US Food and Drug Administration (FDA) and the European Medicine Agency (EMA). Brentuximab vedotin is marketed as therapy for hematological malignancies (Hodgkin lymphoma, systemic anaplastic large cell lymphoma), while ado-trastuzumab emtansine is marketed for treatment of a solid tumor (breast cancer). The approvals of these two ADCs followed the mitigated success of gemtuzumab ozogamicin (Mylotarg), which was withdrawn from the US market in 2010, ten years after approval by the FDA.
Collapse
Affiliation(s)
- Alain Beck
- Centre d'Immunologie Pierre Fabre; Saint-Julien-en-Genevois, France
| | | |
Collapse
|
19
|
Wagner-Rousset E, Janin-Bussat MC, Colas O, Excoffier M, Ayoub D, Haeuw JF, Rilatt I, Perez M, Corvaïa N, Beck A. Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs 2014; 6:273-85. [PMID: 24135617 PMCID: PMC3929440 DOI: 10.4161/mabs.26773] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here we report the design and production of an antibody-fluorophore conjugate (AFC) as a non-toxic model of an antibody-drug conjugate (ADC). This AFC is based on the conjugation of dansyl sulfonamide ethyl amine (DSEA )-linker maleimide on interchain cysteines of trastuzumab used as a reference antibody. The resulting AFC was first characterized by routine analytical methods (SEC, SDS-PAGE, CE-SDS, HIC and native MS), resulting in similar chromatograms,electropherograms and mass spectra to those reported for hinge Cys-linked ADCs. IdeS digestion of the AFC was then performed, followed by reduction and analysis by liquid chromatography coupled to mass spectrometry analysis. Dye loading and distribution on light chain and Fd fragments were calculated, as well as the average dye to antibody ratio (DAR) for both monomeric and multimeric species. In addition, by analyzing the Fc fragment in the same run, full glycoprofiling and demonstration of the absence of additional conjugation was easily achieved. As for naked antibodies and Fc-fusion proteins, IdeS proteolytic digestion may rapidly become a reference analytical method at all stages of ADC discovery, preclinical and clinical development. The method can be routinely used for comparability assays, formulation, process scale-up and transfer, and to define critical quality attributes in a quality-by-design approach.
Collapse
|
20
|
|
21
|
Krall N, Pretto F, Decurtins W, Bernardes GJL, Supuran CT, Neri D. A Small-Molecule Drug Conjugate for the Treatment of Carbonic Anhydrase IX Expressing Tumors. Angew Chem Int Ed Engl 2014; 53:4231-5. [DOI: 10.1002/anie.201310709] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Indexed: 11/07/2022]
|
22
|
Ein niedermolekulares Ligand-Wirkstoff-Konjugat zur Behandlung von Carboanhydrase IX exprimierenden Tumoren. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
A novel anti-CD37 antibody-drug conjugate with multiple anti-tumor mechanisms for the treatment of B-cell malignancies. Blood 2013; 122:3500-10. [PMID: 24002446 DOI: 10.1182/blood-2013-05-505685] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD37 has gathered renewed interest as a therapeutic target in non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL); however, CD37-directed antibody-drug conjugates (ADCs) have not been explored. Here, we identified a novel anti-CD37 antibody, K7153A, with potent in vitro activity against B-cell lines through multiple mechanisms including apoptosis induction, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity. The antibody was conjugated to the maytansinoid, DM1, a potent antimicrotubule agent, via the thioether linker, N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), and the resulting ADC, IMGN529, retained the intrinsic antibody activities and showed enhanced cytotoxic activity from targeted payload delivery. In lymphoma cell lines, IMGN529 induced G2/M cell cycle arrest after internalization and lysosomal processing to lysine-N(ε)-SMCC-DM1 as the sole intracellular maytansinoid metabolite. IMGN529 was highly active against subcutaneous B-cell tumor xenografts in severe combined immunodeficient mice with comparable or better activity than rituximab, a combination of cyclophosphamide, vincristine, and prednisone, or bendamustine. In human blood cells, CD37 is expressed in B cells at similar levels as CD20, and IMGN529 resulted in potent and specific depletion of normal and CLL B cells. These results support evaluation of the CD37-targeted ADC, IMGN529, in clinical trials in patients with B-cell malignancies including NHL and CLL.
Collapse
|
24
|
|
25
|
Lambert JM. Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol 2013; 76:248-62. [PMID: 23173552 PMCID: PMC3731599 DOI: 10.1111/bcp.12044] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/25/2012] [Indexed: 12/27/2022] Open
Abstract
Despite considerable effort, application of monoclonal antibody technology has had only modest success in improving treatment outcomes in patients with solid tumours. Enhancing the cancer cell-killing activity of antibodies through conjugation to highly potent cytotoxic 'payloads' to create antibody-drug conjuates (ADCs) offers a strategy for developing anti-cancer drugs of great promise. Early ADCs exhibited side-effect profiles similar to those of 'classical' chemotherapeutic agents and their performance in clinical trials in cancer patients was generally poor. However, the recent clinical development of ADCs that have highly potent tubulin-acting agents as their payloads have profoundly changed the outlook for ADC technology. Twenty-five such ADCs are in clinical development and one, brentuximab vedotin, was approved by the FDA in August, 2011, for the treatment of patients with Hodgkin's lymphoma and patients with anaplastic large cell lymphoma, based on a high rate of durable responses in single arm phase II clinical trials. More recently, a second ADC, trastuzumab emtansine, has shown excellent anti-tumour activity with the presentation of results of a 991-patient randomized phase III trial in patients with HER2-positive metastatic breast cancer. Treatment with this ADC (single agent) resulted in a significantly improved progression-free survival of 9.6 months compared with 6.4 months for lapatinib plus capecitabine in the comparator arm and significantly prolonged overall survival. Besides demonstrating excellent efficacy, these ADCs were remarkably well tolerated. Thus these, and other ADCs in development, promise to achieve the long sought goal of ADC technology, that is, of having compounds with high anti-tumour activity at doses where adverse effects are generally mild.
Collapse
Affiliation(s)
- John M Lambert
- ImmunoGen, Inc, 830 Winter Street, Waltham, MA 02451, USA.
| |
Collapse
|
26
|
|
27
|
Abstract
Toxin payloads, or drugs, are the crucial components of therapeutic antibody-drug conjugates (ADCs). This review will give an introduction on the requirements that make a toxic compound suitable to be used in an antitumoral ADC and will summarize the structural and mechanistic features of four drug families that yielded promising results in preclinical and clinical studies.
Collapse
Affiliation(s)
- Jan Anderl
- Heidelberg Pharma GmbH, Ladenburg, Germany
| | | | | | | |
Collapse
|
28
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|