1
|
Wang B, Yang C, Jin X, Du Q, Wu H, Dall'Acqua W, Mazor Y. Regulation of antibody-mediated complement-dependent cytotoxicity by modulating the intrinsic affinity and binding valency of IgG for target antigen. MAbs 2021; 12:1690959. [PMID: 31829766 PMCID: PMC6927764 DOI: 10.1080/19420862.2019.1690959] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Complement-dependent cytotoxicity (CDC) is a potent effector mechanism, engaging both innate and adaptive immunity. Although strategies to improve the CDC activity of antibody therapeutics have primarily focused on enhancing the interaction between the antibody crystallizable fragment (Fc) and the first subcomponent of the C1 complement complex (C1q), the relative importance of intrinsic affinity and binding valency of an antibody to the target antigen is poorly understood. Here we show that antibody binding affinity to a cell surface target antigen evidently affects the extent and efficacy of antibody-mediated complement activation. We further report the fundamental role of antibody binding valency in the capacity to recruit C1q and regulate CDC. More specifically, an array of affinity-modulated variants and functionally monovalent bispecific derivatives of high-affinity anti-epidermal growth factor receptor (EGFR) and anti-human epidermal growth factor receptor 2 (HER2) therapeutic immunoglobulin Gs (IgGs), previously reported to be deficient in mediating complement activation, were tested for their ability to bind C1q by biolayer interferometry using antigen-loaded biosensors and to exert CDC against a panel of EGFR and HER2 tumor cells of various histological origins. Significantly, affinity-reduced variants or monovalent derivatives, but not their high-affinity bivalent IgG counterparts, induced near-complete cell cytotoxicity in tumor cell lines that had formerly been shown to be resistant to complement-mediated attack. Our findings suggest that monovalent target engagement may contribute to an optimal geometrical positioning of the antibody Fc to engage C1q and deploy the complement pathway.
Collapse
Affiliation(s)
- Bo Wang
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chunning Yang
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Xiaofang Jin
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Qun Du
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Herren Wu
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - William Dall'Acqua
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yariv Mazor
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
2
|
Dovedi SJ, Elder MJ, Yang C, Sitnikova SI, Irving L, Hansen A, Hair J, Jones DC, Hasani S, Wang B, Im SA, Tran B, Subramaniam DS, Gainer SD, Vashisht K, Lewis A, Jin X, Kentner S, Mulgrew K, Wang Y, Overstreet MG, Dodgson J, Wu Y, Palazon A, Morrow M, Rainey GJ, Browne GJ, Neal F, Murray TV, Toloczko AD, Dall'Acqua W, Achour I, Freeman DJ, Wilkinson RW, Mazor Y. Design and Efficacy of a Monovalent Bispecific PD-1/CTLA4 Antibody That Enhances CTLA4 Blockade on PD-1 + Activated T Cells. Cancer Discov 2021; 11:1100-1117. [PMID: 33419761 DOI: 10.1158/2159-8290.cd-20-1445] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
The clinical benefit of PD-1 blockade can be improved by combination with CTLA4 inhibition but is commensurate with significant immune-related adverse events suboptimally limiting the doses of anti-CTLA4 mAb that can be used. MEDI5752 is a monovalent bispecific antibody designed to suppress the PD-1 pathway and provide modulated CTLA4 inhibition favoring enhanced blockade on PD-1+ activated T cells. We show that MEDI5752 preferentially saturates CTLA4 on PD-1+ T cells versus PD-1- T cells, reducing the dose required to elicit IL2 secretion. Unlike conventional PD-1/CTLA4 mAbs, MEDI5752 leads to the rapid internalization and degradation of PD-1. Moreover, we show that MEDI5752 preferentially localizes and accumulates in tumors providing enhanced activity when compared with a combination of mAbs targeting PD-1 and CTLA4 in vivo. Following treatment with MEDI5752, robust partial responses were observed in two patients with advanced solid tumors. MEDI5752 represents a novel immunotherapy engineered to preferentially inhibit CTLA4 on PD-1+ T cells. SIGNIFICANCE: The unique characteristics of MEDI5752 represent a novel immunotherapy engineered to direct CTLA4 inhibition to PD-1+ T cells with the potential for differentiated activity when compared with current conventional mAb combination strategies targeting PD-1 and CTLA4. This molecule therefore represents a step forward in the rational design of cancer immunotherapy.See related commentary by Burton and Tawbi, p. 1008.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Simon J Dovedi
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom.
| | | | - Chunning Yang
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Lorraine Irving
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Anna Hansen
- Translational Science and Experimental Medicine, Respiratory and Immunology (RI), Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - James Hair
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Des C Jones
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sumati Hasani
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Bo Wang
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Seock-Ah Im
- Division of Hematology-Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul National University School of Medicine, Seoul, Korea
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Kapil Vashisht
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Arthur Lewis
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Xiaofang Jin
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Stacy Kentner
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kathy Mulgrew
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Yaya Wang
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - James Dodgson
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Yanli Wu
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Asis Palazon
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Gareth J Browne
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Frances Neal
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Thomas V Murray
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Aleksandra D Toloczko
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - William Dall'Acqua
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Ikbel Achour
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Yariv Mazor
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland.
| |
Collapse
|
3
|
Abstract
Bispecific therapeutics target two distinct antigens simultaneously and provide novel functionalities that are not attainable with single monospecific molecules or combinations of them. The unique potential of bispecific therapeutics is driving extensive efforts to discover synergistic dual targets, design molecular formats to integrate bispecific elements, and accelerate successful clinical translation. In particular, the past decade has witnessed a boom in the design and development of bispecific antibody formats with more than 100 collections to date. Despite the remarkable progress that has been made to expand the number of formats, qualitative fine-tuning of bispecific formats is needed to achieve optimal dual-target engagement based on understanding of the spatiotemporal interdependence of the two physically linked binding specificities and the complex target biology associated with bispecific approaches. This review provides insights into the design parameters - including affinity, valency, and geometry - that need to be considered at an early stage of development in order to take the best advantage of bispecific therapeutics.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, South Korea.
| |
Collapse
|
4
|
Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods 2018; 154:3-9. [PMID: 30172007 DOI: 10.1016/j.ymeth.2018.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.
Collapse
Affiliation(s)
- Xiufeng Wu
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States.
| | - Stephen J Demarest
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States
| |
Collapse
|
5
|
Braciak TA, Roskopf CC, Wildenhain S, Fenn NC, Schiller CB, Schubert IA, Jacob U, Honegger A, Krupka C, Subklewe M, Spiekermann K, Hopfner KP, Fey GH, Aigner M, Krause S, Mackensen A, Oduncu FS. Dual-targeting triplebody 33-16-123 (SPM-2) mediates effective redirected lysis of primary blasts from patients with a broad range of AML subtypes in combination with natural killer cells. Oncoimmunology 2018; 7:e1472195. [PMID: 30228941 PMCID: PMC6140553 DOI: 10.1080/2162402x.2018.1472195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 04/29/2018] [Indexed: 12/20/2022] Open
Abstract
A number of agents designed for immunotherapy of Acute Myeloid Leukemia (AML) are in preclinical and early clinical development. Most of them target a single antigen on the surface of AML cells. Here we describe the development and key biological properties of a tri-specific agent, the dual-targeting triplebody SPM-2, with binding sites for target antigens CD33 and CD123, and for CD16 to engage NK cells as cytolytic effectors. Primary blasts of nearly all AML patients carry at least one of these target antigens and the pair is particularly promising for the elimination of blasts and leukemia stem cells (LSCs) from a majority of AML patients by dual-targeting agents. The cytolytic activity of NK cells mediated by SPM-2 was analyzed in vitro for primary leukemic cells from 29 patients with a broad range of AML-subtypes. Blasts from all 29 patients, including patients with genomic alterations associated with an unfavorable genetic subtype, were lysed at nanomolar concentrations of SPM-2. Maximum susceptibility was observed for cells with a combined density of CD33 and CD123 above 10,000 copies/cell. Cell populations enriched for AML-LSCs (CD34pos and CD34pos CD38neg cells) from 2 AML patients carried an increased combined antigen density and were lysed at correspondingly lower concentrations of SPM-2 than unsorted blasts. These initial findings raise the expectation that SPM-2 may also be capable of eliminating AML-LSCs and thus of prolonging survival. In the future, patients with a broad range of AML subtypes may benefit from treatment with SPM-2.
Collapse
Affiliation(s)
- Todd A. Braciak
- Department of Hematology and Oncology, Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany
| | - Claudia C. Roskopf
- Department of Hematology and Oncology, Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany
| | - Sarah Wildenhain
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nadja C. Fenn
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian B. Schiller
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ingo A. Schubert
- Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Christina Krupka
- Department of Hematology and Oncology, Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany
- Laboratory of Translational Cancer Immunol ogy, Gene Center of the LMU Munich, Munich, Germany
| | - Marion Subklewe
- Department of Hematology and Oncology, Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany
- Laboratory of Translational Cancer Immunol ogy, Gene Center of the LMU Munich, Munich, Germany
| | - Karsten Spiekermann
- Department of Hematology and Oncology, Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Georg H. Fey
- Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5 - Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Krause
- Department of Internal Medicine 5 - Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology/Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Fuat S. Oduncu
- Department of Hematology and Oncology, Medizinische Klinik und Poliklinik III, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
6
|
Roskopf CC, Braciak TA, Fenn NC, Kobold S, Fey GH, Hopfner KP, Oduncu FS. Dual-targeting triplebody 33-3-19 mediates selective lysis of biphenotypic CD19+ CD33+ leukemia cells. Oncotarget 2017; 7:22579-89. [PMID: 26981773 PMCID: PMC5008383 DOI: 10.18632/oncotarget.8022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/23/2016] [Indexed: 12/28/2022] Open
Abstract
Simultaneous targeting of multiple tumor-associated antigens (TAAs) in cancer immunotherapy is presumed to enhance tumor cell selectivity and to reduce immune escape. The combination of B lymphoid marker CD19 and myeloid marker CD33 is exclusively present on biphenotypic B/myeloid leukemia cells. Triplebody 33-3-19 binds specifically to both of these TAAs and activates T cells as immune effectors. Thereby it induces specific lysis of established myeloid (MOLM13, THP-1) and B-lymphoid cell lines (BV173, SEM, Raji, ARH77) as well as of primary patient cells. EC50 values range from 3 pM to 2.4 nM. In accordance with our hypothesis, 33-3-19 is able to induce preferential lysis of double- rather than single-positive leukemia cells in a target cell mixture: CD19/CD33 double-positive BV173 cells were eliminated to a significantly greater extent than CD19 single-positive SEM cells (36.6% vs. 20.9% in 3 hours, p = 0.0048) in the presence of both cell lines. In contrast, equivalent elimination efficiencies were observed for both cell lines, when control triplebody 19-3-19 or a mixture of the bispecific single chain variable fragments 19-3 and 33-3 were used. This result highlights the potential of dual-targeting agents for efficient and selective immune-intervention in leukemia patients.
Collapse
Affiliation(s)
- Claudia C Roskopf
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Hematology/Oncology, Munich, Germany
| | - Todd A Braciak
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Hematology/Oncology, Munich, Germany
| | - Nadja C Fenn
- Ludwig-Maximilians-Universität München, Department of Biochemistry and Gene Center, Munich, Germany
| | - Sebastian Kobold
- Center for Integrated Protein Science (CIPSM) and Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Division of Clinical Pharmacology, Munich, Germany
| | - Georg H Fey
- Friedrich-Alexander-University Erlangen-Nuremberg, Department of Biology, Erlangen, Germany
| | - Karl-Peter Hopfner
- Ludwig-Maximilians-Universität München, Department of Biochemistry and Gene Center, Munich, Germany
| | - Fuat S Oduncu
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Hematology/Oncology, Munich, Germany
| |
Collapse
|
7
|
Grieger E, Gresch G, Niesen J, Woitok M, Barth S, Fischer R, Fendel R, Stein C. Efficient targeting of CD13 on cancer cells by the immunotoxin scFv13-ETA' and the bispecific scFv [13xds16]. J Cancer Res Clin Oncol 2017; 143:2159-2170. [PMID: 28669053 DOI: 10.1007/s00432-017-2468-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Treatment of cancer using standard chemotherapy still offers a poor prognosis combined with severe side effects. Novel antibody-based therapies have been shown to overcome low efficiency and lack of selectivity by targeting cancer-associated antigens, such as aminopeptidase CD13. METHODS We isolated a high-affinity CD13-specific single-chain fragment variable (scFv13) from a phage display library of V-genes from mice immunized with soluble antigen. An immunotoxin comprising the scFv13 and a truncated version of the exotoxin A of Pseudomonas aeruginosa (ETA', scFv13-ETA') and a bispecific scFv targeting CD13 and CD16 simultaneously (bsscFv[13xds16]) was generated and investigated for their therapeutic potential. RESULTS Both fusion proteins bound specifically to target cells with high affinity. Furthermore, scFv13-ETA' inhibited the proliferation of human cancer cell lines efficiently at low concentrations (IC50 values of 408 pM-7 nM) and induced apoptosis (40-85% of target cells). The bsscFv triggered dose-dependent antibody-dependent cell-mediated cytotoxicity, resulting in the lysis of up to 23.9% A2058 cells, 18.0% MDA-MB-468 cells and 19.1% HL-60 cells. CONCLUSION The provided data demonstrate potent therapeutic activity of the scFv13-ETA' and the bsscFv[13xds16]. The CD13-specific scFv is therefore suitable for the direct and specific delivery of both cytotoxic agents and effector cells to cancer-derived cells, making it ideal for further therapeutic evaluation.
Collapse
Affiliation(s)
- Elena Grieger
- Department of Immunotherapy, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074, Aachen, Germany.
| | - Gerrit Gresch
- Department of Immunotherapy, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
- Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074, Aachen, Germany
| | - Judith Niesen
- Department of Immunotherapy, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Mira Woitok
- Department of Immunotherapy, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Stefan Barth
- Department of Immunotherapy, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
- Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074, Aachen, Germany
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town, 7925, South Africa
| | - Rainer Fischer
- Department of Immunotherapy, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Rolf Fendel
- Department of Immunotherapy, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Christoph Stein
- Department of Immunotherapy, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074, Aachen, Germany
- Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074, Aachen, Germany
| |
Collapse
|
8
|
Schmohl JU, Gleason MK, Dougherty PR, Miller JS, Vallera DA. Heterodimeric Bispecific Single Chain Variable Fragments (scFv) Killer Engagers (BiKEs) Enhance NK-cell Activity Against CD133+ Colorectal Cancer Cells. Target Oncol 2017; 11:353-61. [PMID: 26566946 DOI: 10.1007/s11523-015-0391-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Natural killer (NK) cells are potent cytotoxic lymphocytes that play a critical role in tumor immunosurveillance and control. Cancer stem cells (CSC) initiate and sustain tumor cell growth, mediate drug refractory cancer relapse, and express the well-known surface marker CD133. METHODS DNA fragments from two fully humanized single chain fragment variable (scFv) antibodies recognizing CD16 on NK-cells and CD133 on CSC were genetically spliced forming a novel drug, 16 × 133 BiKE that simultaneously recognizes these antigens to facilitate an immunologic synapse. The anti-CD133 was created using a fusion protein prepared by fusing DNA fragments encoding the two extracellular domains of CD133. Immunization of mice with the resulting fusion protein generated a unique antibody that recognized the molecular framework and was species cross-reactive. RESULTS In vitro chromium-51 ((51)Cr) release cytotoxicity assays at both high and low effector:target ratios demonstrated the ability of the heterodimeric biological drug to greatly enhance NK-cell killing of human Caco-2 colorectal carcinoma cells known to overexpress CD133. The tumor associated antigen specificity of the drug for CD133 even enhanced NK-cell cytotoxicity against the NK-resistant human Burkitt's lymphoma Daudi cell line, which has less than 5 % CD133 surface expression. Flow cytometry analysis revealed increases in NK-cell degranulation and Interferon-γ production upon co-culture with Caco-2 targets in the presence of the drug. CONCLUSION These studies demonstrate that the innate immune system can be effectively recruited to kill CSC using bispecific antibodies targeting CD133 and that this anti-CD133 scFv may be useful in this bispecific platform or perhaps in the design of more complex trispecific molecules for carcinoma therapy.
Collapse
Affiliation(s)
- J U Schmohl
- University of Minnesota Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA.,Department for Hematology and Oncology, Medicine Department 2, University Hospital of Tuebingen, Tuebingen, 72076, Germany
| | - M K Gleason
- University of Minnesota Masonic Cancer Center, Adult Division of Hematology, Oncology and Transplantation Oncology, University of Minnesota, Minneapolis, MN, USA.,Medical Science Liaison, Immuno-Oncology, Novartis Oncology/Sandoz, Minneapolis, MN, USA
| | - P R Dougherty
- University of Minnesota Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - J S Miller
- University of Minnesota Masonic Cancer Center, Adult Division of Hematology, Oncology and Transplantation Oncology, University of Minnesota, Minneapolis, MN, USA
| | - D A Vallera
- University of Minnesota Masonic Cancer Center, Section of Molecular Cancer Therapeutics, Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017; 7:40098. [PMID: 28067257 PMCID: PMC5220356 DOI: 10.1038/srep40098] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/30/2016] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected.
Collapse
|
10
|
Chatzopoulou EI, Roskopf CC, Sekhavati F, Braciak TA, Fenn NC, Hopfner KP, Oduncu FS, Fey GH, Rädler JO. Chip-based platform for dynamic analysis of NK cell cytolysis mediated by a triplebody. Analyst 2017; 141:2284-95. [PMID: 26958659 DOI: 10.1039/c5an02585k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cancer therapy via redirected lysis mediated by antibodies and antibody-derived agents relies on the availability of substantial numbers of sufficiently active immune effector cells. To monitor antitumor responses before and during therapy, sensitive methods are needed, capable of quantitating specific lysis of target cells. Here we present a chip-based single-cell cytometric assay, which uses adherent human target cells arrayed in structured micro-fields. Using a fluorescent indicator of cell death and time-lapse microscopy in an automated high-throughput mode, we measured specific target cell lysis by activated human NK cells, mediated by the therapeutic single chain triplebody SPM-2 (33-16-123). This antibody-derived tri-specific fusion protein carries binding sites for the myeloid antigens CD33 and CD123 and recruits NK cells via a binding site for the Fc-receptor CD16. Specific lysis increased with increasing triplebody concentration, and the single-cell assay was validated by direct comparison with a standard calcein-release assay. The chip-based approach allowed measurement of lysis events over 16 hours (compared to 4 hours for the calcein assay) and required far smaller numbers of primary cells. In addition, dynamic properties inaccessible to conventional methods provide new details about the activation of cytolytic effector cells by antibody-derived agents. Thus, the killing rate exhibited a dose-dependent maximum during the reaction interval. In clinical applications ex vivo monitoring of NK activity of patient's endogenous cells will likely help to choose appropriate therapy, to detect impaired or recovered NK function, and possibly to identify rare subsets of cancer cells with particular sensitivity to effector-cell mediated lysis.
Collapse
Affiliation(s)
- Elisavet I Chatzopoulou
- Faculty of Physics and Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität, Munich, Germany.
| | - Claudia C Roskopf
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Farzad Sekhavati
- Faculty of Physics and Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität, Munich, Germany.
| | - Todd A Braciak
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Nadja C Fenn
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fuat S Oduncu
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Georg H Fey
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim O Rädler
- Faculty of Physics and Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
11
|
Vyas M, Schneider AC, Shatnyeva O, Reiners KS, Tawadros S, Kloess S, Köhl U, Hallek M, Hansen HP, Pogge von Strandmann E. Mono- and dual-targeting triplebodies activate natural killer cells and have anti-tumor activity in vitro and in vivo against chronic lymphocytic leukemia. Oncoimmunology 2016; 5:e1211220. [PMID: 27757305 DOI: 10.1080/2162402x.2016.1211220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia that affects B lymphocytes in adults. Natural killer (NK) cells in CLL patients are intrinsically potent but display poor in situ effector functions. NKG2D is an activating receptor found on NK and CD8+ T cells and plays a role in immunosurveillance of CLL. In this study, we developed mono- and dual-targeting triplebodies utilizing a natural ligand for human NKG2D receptor (ULBP2) to retarget NK cells against tumor cells. Triplebodies in both formats showed better ability to induce NK-cell-dependent killing of target cells compared to bispecific counterparts. A mono-targeting triplebody ULBP2-aCD19-aCD19 successfully triggered NK cell effector functions against CLL cell line MEC1 and primary tumor cells in allogenic and autologous settings. Additionally, a dual-targeting triplebody ULBP2-aCD19-aCD33 specific for two distinct tumor-associated antigens was developed to target antigen loss variants, such as mixed lineage leukemia (MLL). Of note, this triplebody exhibited cytotoxic activity against CD19/CD33 double positive cells and retained its binding features even in the absence of one of the tumor antigens. Further, ULBP2-aCD19-aCD19 showed significant in vivo activity in immune-deficient (NSG) mouse model transplanted with CLL cell line as target cells and human immune cells as an effector population providing a proof-of-principle for this therapeutic concept.
Collapse
Affiliation(s)
- Maulik Vyas
- Department I of Internal Medicine, University Hospital of Cologne , Cologne, Germany
| | | | - Olga Shatnyeva
- Department I of Internal Medicine, University Hospital of Cologne , Cologne, Germany
| | - Katrin S Reiners
- Department I of Internal Medicine, University Hospital of Cologne , Cologne, Germany
| | - Samir Tawadros
- Department of Experimental Medicine, University Hospital of Cologne , Cologne, Germany
| | - Stephan Kloess
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School , Hannover, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School , Hannover, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne , Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University Hospital of Cologne , Cologne, Germany
| | - Elke Pogge von Strandmann
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; Experimental Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
12
|
Roskopf CC, Schiller CB, Braciak TA, Kobold S, Schubert IA, Fey GH, Hopfner KP, Oduncu FS. T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell. Oncotarget 2015; 5:6466-83. [PMID: 25115385 PMCID: PMC4171644 DOI: 10.18632/oncotarget.2238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95 % specific lysis of CD19-positive tumor cells and, at picomolar EC₅₀ doses, had similar cytolytic potency as the clinically successful agent Blinatumomab. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70 % of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient's specific immune status.
Collapse
Affiliation(s)
- Claudia C Roskopf
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Haematology/Oncology, Munich, Germany
| | - Christian B Schiller
- Ludwig-Maximilians-Universität München, Department of Biochemistry/Gene Center, Munich, Germany
| | - Todd A Braciak
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Haematology/Oncology, Munich, Germany
| | - Sebastian Kobold
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Division of Clinical Pharmacology, Munich, Germany
| | - Ingo A Schubert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Erlangen, Germany
| | - Georg H Fey
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Erlangen, Germany
| | - Karl-Peter Hopfner
- Ludwig-Maximilians-Universität München, Department of Biochemistry/Gene Center, Munich, Germany
| | - Fuat S Oduncu
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Haematology/Oncology, Munich, Germany
| |
Collapse
|
13
|
Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015; 6:368. [PMID: 26284063 PMCID: PMC4515552 DOI: 10.3389/fimmu.2015.00368] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacquelyn A. Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Braciak TA, Wildenhain S, Roskopf CC, Schubert IA, Fey GH, Jacob U, Hopfner KP, Oduncu FS. NK cells from an AML patient have recovered in remission and reached comparable cytolytic activity to that of a healthy monozygotic twin mediated by the single-chain triplebody SPM-2. J Transl Med 2013; 11:289. [PMID: 24237598 PMCID: PMC3842817 DOI: 10.1186/1479-5876-11-289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 11/14/2013] [Indexed: 12/26/2022] Open
Abstract
Background The capacity of patient’s Natural Killer cells (NKs) to be activated for cytolysis is an important prerequisite for the success of antibody-derived agents such as single-chain triplebodies (triplebodies) in cancer therapy. NKs recovered from AML patients at diagnosis are often found to be reduced in peripheral blood titers and cytolytic activity. Here, we had the unique opportunity to compare blood titers and cytolytic function of NKs from an AML patient with those of a healthy monozygotic twin. The sibling’s NKs were compared with the patient’s drawn either at diagnosis or in remission after chemotherapy. The cytolytic activities of NKs from these different sources for the patient’s autologous AML blasts and other leukemic target cells in conjunction with triplebody SPM-2, targeting the surface antigens CD33 and CD123 on the AML cells, were compared. Methods Patient NKs drawn at diagnosis were compared to NKs drawn in remission after chemotherapy and a sibling’s NKs, all prepared from PBMCs by immunomagnetic beads (MACS). Redirected lysis (RDL) assays using SPM-2 and antibody-dependent cellular cytotoxicity (ADCC) assays using the therapeutic antibody RituximabTM were performed with the enriched NKs. In addition, MACS-sorted NKs were analyzed for NK cell activating receptors (NCRs) by flow cytometry, and the release of TNF-alpha and IFN-gamma from blood samples of both siblings after the addition of the triplebody were measured in ELISA-assays. Results Patient NKs isolated from peripheral blood drawn in remission produced comparable lysis as NKs from the healthy twin against the patient’s autologous bone marrow (BM) blasts, mediated by SPM-2. The NCR receptor expression profiles on NKs from patient and twin were similar, but NK cell titers in peripheral blood were lower for samples drawn at diagnosis than in remission. Conclusions Peripheral blood NK titers and ex vivo cytolytic activities mediated by triplebody SPM-2 were comparable for cells drawn from an AML patient in remission and a healthy twin. If these results can be generalized, then NKs from AML patients in remission are sufficient in numbers and cytolytic activity to make triplebodies promising new agents for the treatment of AML.
Collapse
Affiliation(s)
- Todd A Braciak
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstrasse 1, D-80336 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|