1
|
Morales J, Allegakoen DV, Garcia JA, Kwong K, Sahu PK, Fajardo DA, Pan Y, Horlbeck MA, Weissman JS, Gustafson WC, Bivona TG, Sabnis AJ. GATOR2-dependent mTORC1 activity is a therapeutic vulnerability in FOXO1 fusion-positive rhabdomyosarcoma. JCI Insight 2022; 7:e162207. [PMID: 36282590 PMCID: PMC9746907 DOI: 10.1172/jci.insight.162207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Oncogenic FOXO1 gene fusions drive a subset of rhabdomyosarcoma (RMS) with poor survival; to date, these cancer drivers are therapeutically intractable. To identify new therapies for this disease, we undertook an isogenic CRISPR-interference screen to define PAX3-FOXO1-specific genetic dependencies and identified genes in the GATOR2 complex. GATOR2 loss in RMS abrogated aa-induced lysosomal localization of mTORC1 and consequent downstream signaling, slowing G1-S cell cycle transition. In vivo suppression of GATOR2 impaired the growth of tumor xenografts and favored the outgrowth of cells lacking PAX3-FOXO1. Loss of a subset of GATOR2 members can be compensated by direct genetic activation of mTORC1. RAS mutations are also sufficient to decouple mTORC1 activation from GATOR2, and indeed, fusion-negative RMS harboring such mutations exhibit aa-independent mTORC1 activity. A bisteric, mTORC1-selective small molecule induced tumor regressions in fusion-positive patient-derived tumor xenografts. These findings highlight a vulnerability in FOXO1 fusion-positive RMS and provide rationale for the clinical evaluation of bisteric mTORC1 inhibitors, currently in phase I testing, to treat this disease. Isogenic genetic screens can, thus, identify potentially exploitable vulnerabilities in fusion-driven pediatric cancers that otherwise remain mostly undruggable.
Collapse
Affiliation(s)
| | | | - José A. Garcia
- Division of Hematology-Oncology, Department of Medicine, UCSF, San Francisco, California, USA
- College of Osteopathic Medicine, Kansas City University, Kansas City, Missouri, USA
| | - Kristen Kwong
- Division of Pediatric Oncology, Department of Pediatrics, and
| | | | - Drew A. Fajardo
- Division of Hematology-Oncology, Department of Medicine, UCSF, San Francisco, California, USA
- School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Yue Pan
- Division of Pediatric Oncology, Department of Pediatrics, and
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Whitehead Institute, Boston, Massachusetts, USA
| | | | - Trever G. Bivona
- Division of Hematology-Oncology, Department of Medicine, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Amit J. Sabnis
- Division of Pediatric Oncology, Department of Pediatrics, and
| |
Collapse
|
2
|
One Ring to Rule them All? Structural and Functional Diversity in the Nuclear Pore Complex. Trends Biochem Sci 2021; 46:595-607. [PMID: 33563541 DOI: 10.1016/j.tibs.2021.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The nuclear pore complex (NPC) is the massive protein assembly that regulates the transport of macromolecules between the nucleus and the cytoplasm. Recent breakthroughs have provided major insights into the structure of the NPC in different eukaryotes, revealing a previously unsuspected diversity of NPC architectures. In parallel, the NPC has been shown to be a key player in regulating essential nuclear processes such as chromatin organization, gene expression, and DNA repair. However, our knowledge of the NPC structure has not been able to address the molecular mechanisms underlying its regulatory roles. We discuss potential explanations, including the coexistence of alternative NPC architectures with specific functional roles.
Collapse
|
3
|
Gunasinghe SD, Shiota T, Stubenrauch CJ, Schulze KE, Webb CT, Fulcher AJ, Dunstan RA, Hay ID, Naderer T, Whelan DR, Bell TDM, Elgass KD, Strugnell RA, Lithgow T. The WD40 Protein BamB Mediates Coupling of BAM Complexes into Assembly Precincts in the Bacterial Outer Membrane. Cell Rep 2019; 23:2782-2794. [PMID: 29847806 DOI: 10.1016/j.celrep.2018.04.093] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/05/2018] [Accepted: 04/23/2018] [Indexed: 01/28/2023] Open
Abstract
The β-barrel assembly machinery (BAM) complex is essential for localization of surface proteins on bacterial cells, but the mechanism by which it functions is unclear. We developed a direct stochastic optical reconstruction microscopy (dSTORM) methodology to view the BAM complex in situ. Single-cell analysis showed that discrete membrane precincts housing several BAM complexes are distributed across the E. coli surface, with a nearest neighbor distance of ∼200 nm. The auxiliary lipoprotein subunit BamB was crucial for this spatial distribution, and in situ crosslinking shows that BamB makes intimate contacts with BamA and BamB in neighboring BAM complexes within the precinct. The BAM complex precincts swell when outer membrane protein synthesis is maximal, visual proof that the precincts are active in protein assembly. This nanoscale interrogation of the BAM complex in situ suggests a model whereby bacterial outer membranes contain highly organized assembly precincts to drive integral protein assembly.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Takuya Shiota
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Christopher J Stubenrauch
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Keith E Schulze
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Chaille T Webb
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Alex J Fulcher
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia; Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Rhys A Dunstan
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Iain D Hay
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Naderer
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Donna R Whelan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia; Hudson Institute of Medical Research, Clayton, VIC 3800, Australia
| | - Richard A Strugnell
- Department of Microbiology & Immunology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
From the resolution revolution to evolution: structural insights into the evolutionary relationships between vesicle coats and the nuclear pore. Curr Opin Struct Biol 2018; 52:32-40. [PMID: 30103204 DOI: 10.1016/j.sbi.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
Abstract
Nuclear pores and coated vesicles are elaborate multi-component protein complexes that oligomerize on membranes, and stabilize or induce membrane curvature. Their components, nucleoporins and coat proteins, respectively, share similar structural folds and some principles of how they interact with membranes. The protocoatomer hypothesis postulates that this is due to divergent evolution from a common ancestor. It therefore has been suggested that nucleoporins and coat proteins have similar higher order architectures. Here, we review recent work that relied on technical advances in cryo-electron microscopy and integrative structural biology to take a fresh look on how these proteins form membrane coats in situ. We discuss the relationship between the architectures of nuclear pores and coated vesicles, and their evolutionary origins.
Collapse
|
5
|
Sagulenko E, Nouwens A, Webb RI, Green K, Yee B, Morgan G, Leis A, Lee KC, Butler MK, Chia N, Pham UTP, Lindgreen S, Catchpole R, Poole AM, Fuerst JA. Nuclear Pore-Like Structures in a Compartmentalized Bacterium. PLoS One 2017; 12:e0169432. [PMID: 28146565 PMCID: PMC5287468 DOI: 10.1371/journal.pone.0169432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 01/02/2023] Open
Abstract
Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence.
Collapse
Affiliation(s)
- Evgeny Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard I. Webb
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin Yee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Garry Morgan
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Leis
- CSIRO - Livestock Industries, Australian Animal Health Laboratory, Biosecurity Microscopy Facility (ABMF), Geelong, Victoria, Australia
| | - Kuo-Chang Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Margaret K. Butler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Chia
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Uyen Thi Phuong Pham
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stinus Lindgreen
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ryan Catchpole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Anthony M. Poole
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Allan Wilson Centre, University of Canterbury, Christchurch, New Zealand
- Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
6
|
Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome. Cell 2017; 166:380-393. [PMID: 27419870 DOI: 10.1016/j.cell.2016.06.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
The 90S pre-ribosome is an early biogenesis intermediate formed during co-transcriptional ribosome formation, composed of ∼70 assembly factors and several small nucleolar RNAs (snoRNAs) that associate with nascent pre-rRNA. We report the cryo-EM structure of the Chaetomium thermophilum 90S pre-ribosome, revealing how a network of biogenesis factors including 19 β-propellers and large α-solenoid proteins engulfs the pre-rRNA. Within the 90S pre-ribosome, we identify the UTP-A, UTP-B, Mpp10-Imp3-Imp4, Bms1-Rcl1, and U3 snoRNP modules, which are organized around 5'-ETS and partially folded 18S rRNA. The U3 snoRNP is strategically positioned at the center of the 90S particle to perform its multiple tasks during pre-rRNA folding and processing. The architecture of the elusive 90S pre-ribosome gives unprecedented structural insight into the early steps of pre-rRNA maturation. Nascent rRNA that is co-transcriptionally folded and given a particular shape by encapsulation within a dedicated mold-like structure is reminiscent of how polypeptides use chaperone chambers for their protein folding.
Collapse
|
7
|
Franks TM, Benner C, Narvaiza I, Marchetto MCN, Young JM, Malik HS, Gage FH, Hetzer MW. Evolution of a transcriptional regulator from a transmembrane nucleoporin. Genes Dev 2016; 30:1155-71. [PMID: 27198230 PMCID: PMC4888837 DOI: 10.1101/gad.280941.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/26/2016] [Indexed: 11/24/2022]
Abstract
Franks et al. identify a widely expressed variant of the transmembrane nucleoporin Pom121 (named sPom121, for “soluble Pom121”) that arose by genomic rearrangement before the divergence of hominoids. Instead of localizing to the NPC, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo–cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for “soluble Pom121”) that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components.
Collapse
Affiliation(s)
- Tobias M Franks
- Laboratory of Molecular and Cellular Biology, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Chris Benner
- Laboratory of Molecular and Cellular Biology, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Iñigo Narvaiza
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Maria C N Marchetto
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Janet M Young
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, California 92093, USA
| | - Martin W Hetzer
- Laboratory of Molecular and Cellular Biology, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
8
|
Baum DA, Baum B. An inside-out origin for the eukaryotic cell. BMC Biol 2014; 12:76. [PMID: 25350791 PMCID: PMC4210606 DOI: 10.1186/s12915-014-0076-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the origin of the eukaryotic cell has long been recognized as the single most profound change in cellular organization during the evolution of life on earth, this transition remains poorly understood. Models have always assumed that the nucleus and endomembrane system evolved within the cytoplasm of a prokaryotic cell. RESULTS Drawing on diverse aspects of cell biology and phylogenetic data, we invert the traditional interpretation of eukaryotic cell evolution. We propose that an ancestral prokaryotic cell, homologous to the modern-day nucleus, extruded membrane-bound blebs beyond its cell wall. These blebs functioned to facilitate material exchange with ectosymbiotic proto-mitochondria. The cytoplasm was then formed through the expansion of blebs around proto-mitochondria, with continuous spaces between the blebs giving rise to the endoplasmic reticulum, which later evolved into the eukaryotic secretory system. Further bleb-fusion steps yielded a continuous plasma membrane, which served to isolate the endoplasmic reticulum from the environment. CONCLUSIONS The inside-out theory is consistent with diverse kinds of data and provides an alternative framework by which to explore and understand the dynamic organization of modern eukaryotic cells. It also helps to explain a number of previously enigmatic features of cell biology, including the autonomy of nuclei in syncytia and the subcellular localization of protein N-glycosylation, and makes many predictions, including a novel mechanism of interphase nuclear pore insertion.
Collapse
|
9
|
Shi Y, Fernandez-Martinez J, Tjioe E, Pellarin R, Kim SJ, Williams R, Schneidman-Duhovny D, Sali A, Rout MP, Chait BT. Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol Cell Proteomics 2014; 13:2927-43. [PMID: 25161197 DOI: 10.1074/mcp.m114.041673] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼ 600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope.
Collapse
Affiliation(s)
- Yi Shi
- From the ‡Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065
| | - Javier Fernandez-Martinez
- ¶Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065
| | - Elina Tjioe
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Riccardo Pellarin
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Seung Joong Kim
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Rosemary Williams
- ¶Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065
| | - Dina Schneidman-Duhovny
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Andrej Sali
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, California 94158
| | - Michael P Rout
- ¶Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065;
| | - Brian T Chait
- From the ‡Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065;
| |
Collapse
|
10
|
Kim SJ, Fernandez-Martinez J, Sampathkumar P, Martel A, Matsui T, Tsuruta H, Weiss TM, Shi Y, Markina-Inarrairaegui A, Bonanno JB, Sauder JM, Burley SK, Chait BT, Almo SC, Rout MP, Sali A. Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex. Mol Cell Proteomics 2014; 13:2911-26. [PMID: 25139911 DOI: 10.1074/mcp.m114.040915] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133(55-502)) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup133(2-1157). Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.
Collapse
Affiliation(s)
- Seung Joong Kim
- From the ‡Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California San Francisco, San Francisco, California 94158
| | - Javier Fernandez-Martinez
- ¶Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065
| | - Parthasarathy Sampathkumar
- ‖Department of Biochemistry, Ullmann Building, Room 409, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Anne Martel
- **Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 69, Menlo Park, California 94025
| | - Tsutomu Matsui
- **Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 69, Menlo Park, California 94025
| | - Hiro Tsuruta
- **Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 69, Menlo Park, California 94025
| | - Thomas M Weiss
- **Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 69, Menlo Park, California 94025
| | - Yi Shi
- ‡‡Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065
| | - Ane Markina-Inarrairaegui
- §§Laboratorio de Genetica Molecular de Aspergillus, Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Jeffery B Bonanno
- ‖Department of Biochemistry, Ullmann Building, Room 409, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - J Michael Sauder
- ¶¶Discovery Chemistry Research and Technologies (DCR&T), Eli Lilly and Company, Lilly Biotechnology Center, 10300 Campus Point Drive, Suite 200, San Diego, California 92121
| | - Stephen K Burley
- ‖‖Center for Integrative Proteomics Research, Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 174 Frelinghuysen Road, Piscataway, New Jersey 08854
| | - Brian T Chait
- ‡‡Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065
| | - Steven C Almo
- ‖Department of Biochemistry, Ullmann Building, Room 409, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461;
| | - Michael P Rout
- ¶Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065;
| | - Andrej Sali
- From the ‡Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California San Francisco, San Francisco, California 94158;
| |
Collapse
|
11
|
Niu X, Hong J, Zheng X, Melville DB, Knapik EW, Meng A, Peng J. The nuclear pore complex function of Sec13 protein is required for cell survival during retinal development. J Biol Chem 2014; 289:11971-11985. [PMID: 24627485 DOI: 10.1074/jbc.m114.547190] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sec13 is a dual function protein, being a core component of both the COPII coat, which mediates protein trafficking from the endoplasmic reticulum to the Golgi apparatus, and the nuclear pore complex (NPC), which facilitates nucleo-cytoplasmic traffic. Here, we present a genetic model to differentiate the roles of these two functions of Sec13 in vivo. We report that sec13(sq198) mutant embryos develop small eyes that exhibit disrupted retinal lamination and that the mutant retina contains an excessive number of apoptotic cells. Surprisingly, we found that loss of COPII function by oligonucleotide-mediated gene knockdown of sec31a and sec31b or brefeldin A treatment did not disrupt retinal lamination, although it did result in digestive organ defects similar to those seen in sec13(sq198), suggesting that the digestive organ defects observed in sec13(sq198) are due to loss of COPII function, whereas the retinal lamination defects are due to loss of the NPC function. We showed that the retinal cells of sec13(sq198) failed to form proper nuclear pores, leading to a nuclear accumulation of total mRNA and abnormal activation of the p53-dependent apoptosis pathway, causing the retinal defect in sec13(sq198). Furthermore, we found that a mutant lacking Nup107, a key NPC-specific component, phenocopied the retinal lamination phenotype as observed in sec13(sq198). Our results demonstrate a requirement for the nuclear pore function of Sec13 in development of the retina and provide the first genetic evidence to differentiate the contributions of the NPC and the COPII functions of Sec13 during organogenesis.
Collapse
Affiliation(s)
- Xubo Niu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Hong
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zheng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - David B Melville
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3370; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ela W Knapik
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Thierbach K, von Appen A, Thoms M, Beck M, Flemming D, Hurt E. Protein Interfaces of the Conserved Nup84 Complex from Chaetomium thermophilum Shown by Crosslinking Mass Spectrometry and Electron Microscopy. Structure 2013; 21:1672-82. [DOI: 10.1016/j.str.2013.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
|
13
|
Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340:1100-6. [PMID: 23723238 DOI: 10.1126/science.1232044] [Citation(s) in RCA: 830] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mTOR complex 1 (mTORC1) pathway promotes cell growth in response to many cues, including amino acids, which act through the Rag guanosine triphosphatases (GTPases) to promote mTORC1 translocation to the lysosomal surface, its site of activation. Although progress has been made in identifying positive regulators of the Rags, it is unknown if negative factors also exist. Here, we identify GATOR as a complex that interacts with the Rags and is composed of two subcomplexes we call GATOR1 and -2. Inhibition of GATOR1 subunits (DEPDC5, Nprl2, and Nprl3) makes mTORC1 signaling resistant to amino acid deprivation. In contrast, inhibition of GATOR2 subunits (Mios, WDR24, WDR59, Seh1L, and Sec13) suppresses mTORC1 signaling, and epistasis analysis shows that GATOR2 negatively regulates DEPDC5. GATOR1 has GTPase-activating protein (GAP) activity for RagA and RagB, and its components are mutated in human cancer. In cancer cells with inactivating mutations in GATOR1, mTORC1 is hyperactive and insensitive to amino acid starvation, and such cells are hypersensitive to rapamycin, an mTORC1 inhibitor. Thus, we identify a key negative regulator of the Rag GTPases and reveal that, like other mTORC1 regulators, Rag function can be deregulated in cancer.
Collapse
Affiliation(s)
- Liron Bar-Peled
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
15
|
Abstract
In eukaryotic cells, the spatial segregation of replication and transcription in the nucleus and translation in the cytoplasm imposes the requirement of transporting thousands of macromolecules between these two compartments. Nuclear pore complexes (NPCs) are the sole gateways that facilitate this macromolecular exchange across the nuclear envelope with the help of soluble transport receptors. Whereas the mobile transport machinery is reasonably well understood at the atomic level, a commensurate structural characterization of the NPC has only begun in the past few years. Here, we describe the recent progress toward the elucidation of the atomic structure of the NPC, highlight emerging concepts of its underlying architecture, and discuss key outstanding questions and challenges. The applied structure determination as well as the described design principles of the NPC may serve as paradigms for other macromolecular assemblies.
Collapse
Affiliation(s)
- André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
16
|
Characterization of human Sec16B: indications of specialized, non-redundant functions. Sci Rep 2011; 1:77. [PMID: 22355596 PMCID: PMC3216564 DOI: 10.1038/srep00077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway and from here newly synthesized proteins and lipids are delivered to the Golgi. The selective cargo export from the ER is mediated by COPII-assembly at specific sites of the ER, the so-called transitional ER (tER). The peripheral membrane protein Sec16, first identified in yeast, localizes to transitional ER and plays a key role in organization of these sites. Sec16 defines the tER and is thought to act as a scaffold for the COPII coat assembly. In humans two isoforms of Sec16 are present, the larger Sec16A and the smaller Sec16B. Nevertheless, the functional differences between the two isoforms are ill-defined. Here we describe characterization of the localization and dynamics of Sec16B relative to Sec16A, provide evidence that Sec16B is likely a minor or perhaps specialized form of Sec16, and that it is not functionally redundant with Sec16A.
Collapse
|
17
|
Goryachev AB. A common mechanism for protein cluster formation. Small GTPases 2011; 2:143-147. [PMID: 21776415 DOI: 10.4161/sgtp.2.3.15902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/16/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022] Open
Abstract
Polarized states on the membranes are characterized by focal accumulation of proteins and lipids at local concentrations far exceeding their levels typically found outside of these dense clusters. Principles of thermodynamics argue that formation and maintenance of such structures require continuous expenditure of cellular energy to combat the effect of molecular diffusion that relentlessly dissipates the clusters in favor of the spatially homogeneous state. Small GTPases are known to play a crucial role in the formation of several such polarized states. Their ability to consume stored energy and convert it into a potentially useful work by cyclically hydrolyzing GTP and coupling to various effectors in a nucleotide-dependent way, makes them eligible candidates to fulfill the requirements for the molecules involved in the mechanisms responsible for the maintenance of polarized states. Consistently, continuous nucleotide cycling of small GTPases has been found required for the emergence of structures in several well characterized cases. Despite this general awareness, the detailed molecular mechanisms remain largely unknown. In a recent study, not directly involving small GTPases, we proposed a mechanism explaining the emergence and maintenance of the stable cell-polarity landmark that manifests itself as a protein cluster positioned on the plasma membrane at the growing ends of fission yeast cells. Unexpectedly, this study has suggested a number of striking parallels with the mechanisms based on the activity of small GTPases. These findings highlight common design principles of cellular pattern-forming mechanisms that have been mixed and matched in various combinations in the course of evolution to achieve the same desired outcome-tightly controlled in space and time formation of dense protein clusters.
Collapse
Affiliation(s)
- Andrew B Goryachev
- Centre for Systems Biology; School of Biological Sciences; The University of Edinburgh; Edinburgh, UK
| |
Collapse
|